(本小題共12分)如圖,一張平行四邊形的硬紙片中,,。沿它的對(duì)角線把△折起,使點(diǎn)到達(dá)平面外點(diǎn)的位置。

(Ⅰ)證明:平面平面;

(Ⅱ)如果△為等腰三角形,求二面角的大小。

 

 

 

 

 

 

 

【答案】

【解析】解:(Ⅰ)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051812220948435297/SYS201205181223080156598236_DA.files/image002.png">,,

所以。

因?yàn)檎郫B過(guò)程中,

所以,又,故平面。

平面,所以平面平面。

(Ⅱ)如圖,延長(zhǎng),使,連結(jié),。

 

 

 

 


因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051812220948435297/SYS201205181223080156598236_DA.files/image020.png">,,,所以為正方形,。

由于,都與平面垂直,所以,可知。

因此只有時(shí),△為等腰三角形。

中,,又,

所以△為等邊三角形,

由(Ⅰ)可知,,所以為二面角的平面角,即二面角的大小為。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江哈爾濱市高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)

如圖,已知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)AO為坐標(biāo)原點(diǎn),

定點(diǎn)B的坐標(biāo)為(2,0).

(1)若動(dòng)點(diǎn)M滿(mǎn)足,求點(diǎn)M的軌跡C;

(2)若過(guò)點(diǎn)B的直線l′(斜率不等于零)與(I)中的軌跡C交于不同的兩點(diǎn)E、F(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江哈爾濱市高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCDQAD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=AD=1,CD=

(1)求證:平面PQB⊥平面PAD;

(2)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市高三階段考試(二)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)如圖,四邊形是矩形,平面,上一點(diǎn),平面,點(diǎn),分別是,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年內(nèi)蒙古呼倫貝爾市高三第四次模擬考試文科數(shù)學(xué)試卷 題型:解答題

(本小題共12分)如圖所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,

F為CE上的點(diǎn),且BF⊥平面ACE 

(1)求證:AE⊥平面BCE;

(2)求證:AE∥平面BFD;

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省漢中市漢臺(tái)區(qū)高二上學(xué)期期末數(shù)學(xué)文卷 題型:解答題

(本小題共12分)如圖,△ACD是等邊三角形,△ABC是等腰直角

三角形,∠ACB=90°,BD交AC于E,AB=2.

(1)求cos∠CBE的值;

(2)求AE。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案