4.設(shè)F1,F(xiàn)2分別為橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1、b1>0)的公共焦點(diǎn),它們在第一象限內(nèi)交于點(diǎn)M,∠F1MF2=90°,若MF1•MF2=ab,則雙曲線C1的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{6}}{3}$

分析 利用橢圓與雙曲線的定義列出方程,通過勾股定理求解離心率即可.

解答 解:由橢圓與雙曲線的定義,知|MF1|+|MF2|=2a,|MF1|-|MF2|=2a1,
所以|MF1|=a+a1,|MF2|=a-a1
因為∠F1MF2=90°,
所以|MF1|2+|MF2|2=4c2,
|MF1|•|MF2|=ab,即a2-a12=ab,①
即(a+a12+(a-a12=4c2
化為a2+a12=2c2,②
由a2-b2=c2,
①+②可得2a2=2c2+ab,
即有a=$\frac{2\sqrt{3}}{3}$c,b=$\frac{\sqrt{3}}{3}$c,
②-①可得2a12=2c2-ab
=2c2-$\frac{2}{3}$c2=$\frac{4}{3}$c2,
則雙曲線的離心率為$\frac{c}{{a}_{1}}$=$\sqrt{\frac{3}{2}}$=$\frac{\sqrt{6}}{2}$.
故選:C.

點(diǎn)評 本題考查橢圓和雙曲線的定義、方程和性質(zhì),主要是離心率的求法,考查轉(zhuǎn)化思想和化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)點(diǎn)A(0,1),B(3,2),則$\overrightarrow{AB}$=( 。
A.(-1,4)B.(1,3)C.(3,1)D.(7,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,焦距為2,過點(diǎn)F2作直線l交橢圓于M、N兩點(diǎn),△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y=$\frac{c}{a}$x,y=-$\frac{c}{a}$x于P,Q兩點(diǎn),求$\frac{{S}_{△OMN}}{|PQ|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知直線 l1:mx+( m+1)y+2=0,l 2:( m+1)x+( m+4)y-3=0,則“m=-2”是“l(fā)1⊥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù) f(x)=2sin2ωx+2sinωxcosωx-1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在[$\frac{π}{6}$,$\frac{π}{4}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知數(shù)列{an}的前n項和為Sn,且Sn=4-an,則滿足$\frac{1}{{a}_{n}}$=2017+m的最小正整數(shù)m的值為(  )
A.33B.32C.31D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)向量$\overrightarrow a=({1,2m}),\overrightarrow b=({m+1,1}),\overrightarrow c=({2,m})$,若$({\overrightarrow a+\overrightarrow c})$⊥$\overrightarrow b$則$|{\overrightarrow a}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)設(shè)${(1+x+{x^2})^3}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_6}{x^6}$,求a2,a3
(2)設(shè)$x={(25+2\sqrt{155})^{20}}+{(25+2\sqrt{155})^{17}}$,其x的整數(shù)部分的個位數(shù)字.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足${2^{{a_{n-1}}}}+{2^{{a_{n+1}}}}={2^{1+{a_n}}},n≥2,n∈{N^*}$,且a1=1,a2=2,則a16=( 。
A.4B.5C.6D.8

查看答案和解析>>

同步練習(xí)冊答案