長沙市某中學(xué)在每年的11月份都會舉行“社團文化節(jié)”,開幕式當(dāng)天組織舉行大型的文藝表演,同時邀請36名不同社團的社長進行才藝展示.其中有的社長是高中學(xué)生,的社長是初中學(xué)生,高中社長中有是高一學(xué)生,初中社長中有是初二學(xué)生.
(1)若校園電視臺記者隨機采訪3位社長,求恰有1人是高一學(xué)生且至少有1人是初中學(xué)生的概率;
(2)若校園電視臺記者隨機采訪3位初中學(xué)生社長,設(shè)初二學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

(1);(2)分布列詳見解析,.

解析試題分析:(1)采訪3人中,恰有1人是高一學(xué)生且至少有1人是初中學(xué)生.則這3人的組成有兩種,一種是3人中有2人是高中生,且其中一人是高一學(xué)生,另一人為初中生;另一種是3人中有兩人是初中生,另一人是高一學(xué)生.再根據(jù)條件分別計算這兩種情況的組合數(shù)除以采訪3人的所有可能的種數(shù),即得到所求概率;(2)先得到的可能取值為0,1,2,3,再計算各種可能取值的概率,從而列出分布列.最后根據(jù)分布列的情況由期望的定義得到所求期望值.
試題解析:(1)由題意得,高中學(xué)生社長有27人,其中高一學(xué)生9人;初中學(xué)生社長有9人,其中初二
學(xué)生社長6人.    事件為“采訪3人中,恰有1人是高一學(xué)生且至少有1人是初中學(xué)生”.
                     6分
(2)的可能取值為0,1,2,3
,   ,, ,
所以的分布列為

 

0
 
1
 
2
3
 


 

 


所以,         12分
考點:1.組合;2.隨機事件的概率;3分布列與期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)R,若是從區(qū)間中隨機抽取的一個數(shù),是從區(qū)間中隨機抽取的一個數(shù),求方程沒有實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

根據(jù)以往的成績記錄,甲、乙兩名隊員射擊擊中目標(biāo)靶的環(huán)數(shù)的頻率分布情況如圖所示.

假設(shè)每名隊員每次射擊相互獨立.
(Ⅰ)求上圖中的值;
(Ⅱ)隊員甲進行三次射擊,求擊中目標(biāo)靶的環(huán)數(shù)不低于8環(huán)的次數(shù)的分布列及數(shù)學(xué)期望(頻率當(dāng)作概率使用);
(Ⅲ)由上圖判斷,在甲、乙兩名隊員中,哪一名隊員的射擊成績更穩(wěn)定?(結(jié)論不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

從裝有大小相同的2個紅球和6個白球的袋子中,每摸出2個球為一次試驗,直到摸出的球中有紅球(不放回),則試驗結(jié)束.
(1)求第一次試驗恰摸到一個紅球和一個白球概率;
(2)記試驗次數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司計劃在迎春節(jié)聯(lián)歡會中設(shè)一項抽獎活動:在一個不透明的口袋中裝入外形一樣號碼分別為1,2,3,…,10的十個小球;顒诱咭淮螐闹忻鋈齻小球,三球號碼有且僅有兩個連號的為三等獎,獎金30元;三球號碼都連號為二等獎,獎金60元;三球號碼分別為1,5,10為一等獎,獎金240元;其余情況無獎金。
(1)求員工甲抽獎一次所得獎金ξ的分布列與期望;
(2)員工乙幸運地先后獲得四次抽獎機會,他得獎次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩艘貨輪都要在某個泊位?6小時,假定它們在一晝夜的時間段中隨機到達(dá),試求兩船中有一艘在停泊位時,另一艘船必須等待的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

小波以游戲方式?jīng)Q定:是去打球、唱歌還是去下棋.游戲規(guī)則為:以O(shè)為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記這兩個向量的數(shù)量積為X,若就去打球;若就去唱歌;若就去下棋.

(Ⅰ)寫出數(shù)量積X的所有可能取值;
(Ⅱ)分別求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)招聘工作人員,設(shè)置、三組測試項目供參考人員選擇,甲、乙、丙、丁、戊五人參加招聘,其中甲、乙兩人各自獨立參加組測試,丙、丁兩人各自獨立參加組測試.已知甲、乙兩人各自通過測試的概率均為,丙、丁兩人各自通過測試的概率均為.戊參加組測試,組共有6道試題,戊會其中4題.戊只能且必須選擇4題作答,答對3題則競聘成功.
(Ⅰ)求戊競聘成功的概率;
(Ⅱ)求參加組測試通過的人數(shù)多于參加組測試通過的人數(shù)的概率;
(Ⅲ)記組測試通過的總?cè)藬?shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案