【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,已知曲線的參數(shù)方程為(為參數(shù)),在極坐標系中,直線的方程為: ,直線的方程為.
(Ⅰ)寫出曲線的直角坐標方程,并指出它是何種曲線;
(Ⅱ)設與曲線交于兩點, 與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系xOy中,設橢圓E: =1(a>b>0),其中b= a,F(xiàn)為橢圓的右焦點,P(1,1)為橢圓E內(nèi)一點,PF⊥x軸.
(1)求橢圓E的方程;
(2)過P點作斜率為k1 , k2的兩條直線分別與橢圓交于點A,C和B,D.若滿足|AP||PC|=|BP||DP|,問k1+k2是否為定值?若是,請求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐S﹣ABCD的底面是正方形,每條側棱的長都是底面邊長的 倍,P為側棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P﹣AC﹣D的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設向量 =(4cosα,sinα), =(sinβ,4cosβ), =(cosβ,﹣4sinβ)
(1)若 與 ﹣2 垂直,求tan(α+β)的值;
(2)若β∈(﹣ ],求| |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=sin(2x+ )+tan cos2x.
(1)求f(x)的最小正周期及其圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間(0, )上的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com