已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2+2x,若f(2-a2)>f(a),則實數(shù)a的取值范圍是


  1. A.
    (-∞,-1)∪(2,+∞)
  2. B.
    (-2,1)
  3. C.
    (-1,2)
  4. D.
    (-∞,-2)∪(1,+∞)
B
分析:由題意可先判斷出f(x)=x2+2x=(x+1)2-1在(0,+∞)上單調(diào)遞增,根據(jù)奇函數(shù)的對稱區(qū)間上的單調(diào)性可知,f(x)在(-∞,0)上單調(diào)遞增,從而可比較2-a2與a的大小,解不等式可求a的范圍
解答:∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上單調(diào)遞增
又∵f(x)是定義在R上的奇函數(shù)
根據(jù)奇函數(shù)的對稱區(qū)間上的單調(diào)性可知,f(x)在(-∞,0)上單調(diào)遞增
∴f(x)在R上單調(diào)遞增
∵f(2-a2)>f(a)
∴2-a2>a
解不等式可得,-2<a<1
故選B
點評:本題主要考查了奇函數(shù)在對稱區(qū)間上的單調(diào)性相同(偶函數(shù)對稱區(qū)間上的單調(diào)性相反)的性質(zhì)的應(yīng)用,一元二次不等式的求解,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時,都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對所有f'(x)=0,任意x=-
1
2
恒成立,求實數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在實數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊答案