已知函數(shù)f(x)=-2+lnx.
(Ⅰ)若a=1,求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,2]上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.
(Ⅰ)見解析 (Ⅱ)的取值范圍是.
【解析】(1)當(dāng)a=1時(shí),解析式確定,可利用導(dǎo)數(shù)等于零,求出極值。但要注意定義域。
(II)本小題轉(zhuǎn)化為在[1,2]上恒成立,即在恒成立,再轉(zhuǎn)化為函數(shù)最值問題求解。
(Ⅰ)時(shí),,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415162796778079/SYS201208241517034303894932_DA.files/image008.png">. …………1分
,………3分
當(dāng),,函數(shù)單調(diào)遞增;
當(dāng),,函數(shù)單調(diào)遞減,…………………5分
∴ 有極大值,無極小值.………………………………6分
(Ⅱ),……7分
∵ 函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),∴ 時(shí),恒成立.即 在恒成立,…………9分
令,因函數(shù)在上單調(diào)遞增,所以,即,…11分
解得,即的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年上虞市質(zhì)檢一文) 已知函數(shù)f(x)=ax4+bx2+c的圖象經(jīng)過點(diǎn)(0,2),且在x=1處的切線方程
是y=-4x+.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)在區(qū)間[-4,1]上的最值.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年河南省原名校高三上學(xué)期期聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=2sin(ωx+)(ω>0,0<<π)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式:
(2)已知=,且a∈(0,),求f(a)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南省原名校聯(lián)盟高三上學(xué)期第一次摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=ln-a+x(a>0).
(Ⅰ)若=,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年高三一輪精品復(fù)習(xí)單元測試(12)數(shù)學(xué)試卷解析版 題型:解答題
(本小題滿分12分)已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值.
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:填空題
已知函數(shù)f(x)=,若f(x)存在零點(diǎn),則實(shí)數(shù)a的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com