如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,,.
(Ⅰ)若點(diǎn)是的中點(diǎn),求證:平面;
(II)試問點(diǎn)在線段上什么位置時(shí),二面角的余弦值為.
(Ⅰ)見解析;
(II)當(dāng)點(diǎn)在線段的中點(diǎn)時(shí),二面角的余弦值為.
解析試題分析:(Ⅰ)通過連接,應(yīng)用三角形的中位線定理得到證明得到 面.
(II)利用空間直角坐標(biāo)系,確定平面的一個(gè)法向量,而平面的法向量,得到,確定出點(diǎn)在線段的中點(diǎn)時(shí),二面角的余弦值為.解答此類問題,要注意發(fā)現(xiàn)垂直關(guān)系,建立適當(dāng)?shù)刂苯亲鴺?biāo)系,以簡(jiǎn)化解題過程.
試題解析:(Ⅰ)證明:連接,設(shè),連接,
由三角形的中位線定理可得:,
∵平面,平面,∴平面.
(II)建立如圖空間直角坐標(biāo)系,
在中,斜邊,得,所以,.
設(shè),得.
設(shè)平面的一個(gè)法向量,由得,
取,得.
而平面的法向量,所以由題意,即,
解得(舍去)或,所以,當(dāng)點(diǎn)在線段的中點(diǎn)時(shí),二面角的余弦值為.
考點(diǎn):1、平行關(guān)系;2、空間向量的應(yīng)用;3、二面角的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長(zhǎng)方體,中,,點(diǎn)在棱AB上移動(dòng).
(Ⅰ)證明:;
(Ⅱ)求點(diǎn)到平面的距離;
(Ⅲ)等于何值時(shí),二面角的大小為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(如圖1)在平面四邊形中,為中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).
(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在正方體ABCD﹣A1B1C1D1中,棱長(zhǎng)AB=1.
(Ⅰ)求異面直線A1B與 B1C所成角的大小;(Ⅱ)求證:平面A1BD∥平面B1CD1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為平行四邊形,其中AB=, BD=BC=1, AA1=2,E為DC的中點(diǎn),F(xiàn)是棱DD1上的動(dòng)點(diǎn).
(1)求異面直線AD1與BE所成角的正切值;
(2)當(dāng)DF為何值時(shí),EF與BC1所成的角為90°?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面,四邊形是矩形,,M,N分別是AB,PC的中點(diǎn),
(1)求平面和平面所成二面角的大小,
(2)求證:平面
(3)當(dāng)的長(zhǎng)度變化時(shí),求異面直線PC與AD所成角的可能范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,在長(zhǎng)方體中,,點(diǎn)E為AB的中點(diǎn).
(Ⅰ)求與平面所成的角;
(Ⅱ)求二面角的平面角的正切值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com