已知M是直角坐標(biāo)系xOy中第一象限內(nèi)的一動點,定點F1(-5,0)、F2(5,0).

(1)若|+|=10,求點M的軌跡方程;

(2)若·=5,且點M又在雙曲線xy=k(k>0)上,求k的取值范圍.

思路解析:此題主要考查向量模的運算、數(shù)量積的求法及字母取值范圍的求法.(2)中求k的范圍主要應(yīng)用兩曲線相交,組成方程組消去一個未知數(shù)后的一元二次方程有解的條件Δ≥0進(jìn)行求解.

:(1)設(shè)M(x,y),則=(-5-x,-y),=(5-x,-y),

+=(-2x,-2y).

∴|+|==10.

∴x2+y2=25(x>0,y>0).

(2)∵·=5,

∴(-5-x)(5-x)+(-y)(-y)=5.

∴x2+y2=30.

又∵M(jìn)在雙曲線xy=k上,∴將x=代入x2+y2=30得y4-30y2+k2=0.

∵方程有解,

∴Δ=900-4k2≥0.

∴k≤15.

又∵M(jìn)在第一象限,

∴0<k≤15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點,其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè).
①求橢圓離心率的取值范圍;
②若A、B、M、O、C、D(O為坐標(biāo)原點)依次均勻分布在x軸上,問直線MF1與直線DF2的交點是否在一條定直線上?若是,請求出這條定直線的方程;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知動點P(x,y)(y≤0)到點F(0.-2)的距離為d1,到x軸的距離為d2,且d1-d2=2.
(I)求點P的軌跡E的方程;
(Ⅱ)若A、B是(I)中E上的兩點,
.
OA
.
OB
=-16
,過A、B分別作直線y=2的垂線,垂足分別P、Q.證明:直線AB過定點M,且
.
MP
.
MQ
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知矩陣M=
2
3
-
1
3
1
3
1
3
,△ABC的頂點為A(0,0),B(2,0),C(1,2),求△ABC在矩陣M-1的變換作用下所得△A′B′C′的面積.
(Ⅱ)極坐標(biāo)的極點是直角坐標(biāo)系原點,極軸為X軸正半軸,直線l的參數(shù)方程為
x=x0+
1
2
t
y=
3
2
t

(t為參數(shù)).⊙O的極坐標(biāo)方程為ρ=2,若直線l與⊙O相切,求實數(shù)x0的值.
(Ⅲ)已知a,b,c∈R+,且
1
a
+
2
b
+
3
c
=2
,求a+2b+3c的最小值及取得最小值時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知P是函數(shù)f(x)=ex(x>0)的圖象上的動點,該圖象在點P處的切線l交y軸于點M,過點P作l的垂線交y軸于點N,設(shè)線段MN的中點的縱坐標(biāo)為t,則t的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長為4,與圓C2截得的弦長是6.

查看答案和解析>>

同步練習(xí)冊答案