已知f(x)=sinx+2x,x∈[-
π
2
π
2
]
,且f(1+a)+f(2a)<0,則a的取值范圍是
[-
π
4
,-
1
3
[-
π
4
,-
1
3
分析:根據(jù)函數(shù)奇偶性的定義,證出f(x)在其定義域[-
π
2
,
π
2
]
上是奇函數(shù),從而將不等式f(1+a)+f(2a)<0化成f(1+a)>f(-2a).再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得函數(shù)f(x)在[-
π
2
π
2
]
上是增函數(shù),由此建立關(guān)于a的不等式,解之即可得到實(shí)數(shù)a的取值范圍.
解答:解:∵f(-x)=-sinx-2x=-f(x),
∴函數(shù)f(x)在其定義域[-
π
2
,
π
2
]
上是奇函數(shù)
因此,不等式f(1+a)+f(2a)<0可化成f(1+a)<-f(2a)
即f(1+a)>f(-2a),
∵函數(shù)f(x)=sinx+2x,求導(dǎo)數(shù)得f'(x)=cosx+2>0
∴函數(shù)f(x)在[-
π
2
π
2
]
上是增函數(shù)
由此可得原不等式等價(jià)于
-
π
2
≤1+a≤
π
2
-
π
2
≤-2a≤
π
2
1+a<-2a
,解之得-
π
4
≤a<-
1
3

即實(shí)數(shù)a的取值范圍為[-
π
4
,-
1
3

故答案為:[-
π
4
,-
1
3
點(diǎn)評(píng):本題給出含有正弦與一次式的基本初等函數(shù),在已知單調(diào)性和奇偶性的前提下求解關(guān)于a的不等式,著重考查了函數(shù)的單調(diào)性、奇偶性等基本性質(zhì)和不等式的解法等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象(  )
A、與g(x)的圖象相同
B、與g(x)的圖象關(guān)于y軸對(duì)稱(chēng)
C、向左平移
π
2
個(gè)單位,得到g(x)的圖象
D、向右平移
π
2
個(gè)單位,得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
sinπx   (x<0)
f(x-1)-1 (x>0)
,則f(-
11
6
)+f(
11
6
)=
-2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(ωx+
π
3
)(ω>0)的圖象與y=-1的圖象的相鄰兩交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只需把y=cos2x的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則f(x)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=sinπx.
(1)設(shè)g(x)=
f(x),(x≥0)
g(x+1)+1,(x<0)
,求g(
1
4
)
g(-
1
3
)
;
(2)設(shè)h(x)=f2(x)+
3
f(x)cosπx+1
,求h(x)的最大值及此時(shí)x值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案