設(shè)全集為R,集合A={x|x2+3x-4>0,x∈R},B={x|x2-x-6<0,x∈R}.
求(1)A∩B;(2)CR(A∩B);(3)A∪CRB.
分析:(1)先通過解二次不等式化簡集合A,B,利用集合的交集的定義求出A∩B;
(2)利用(1)中的結(jié)果,利用補集的定義求出CR(A∩B);
(3)利用補集的定義求出CRB,再利用并集的定義求出A∪CRB.
解答:解:A={x|x2+3x-4>0,x∈R}={x|x>1或x<-4};
B={x|x2-x-6<0,x∈R={x|-2<x<3}
(1)所以A∩B={x|1<x<3}(4分)
(2)CR(A∩B)={x|x≤1或x≥3}(9分)
(3)CRB={x|x≤-2或x≥3}
所以A∪(CRB)={x|x≤-2或x>1}(14分)
點評:本題考查二次不等式的解法、交集、補集、并集的定義,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)全集為R,集合A={x|-1<x<1},B={x|x≥0},則?R(A∪B)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集為R,集合A={x|y=
1-x
},B={y|y=2-x,x∈R}
,則圖中陰影部分表示的集合是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設(shè)全集為R,集合A={x|3≤x<7},集合B={x|2<x<8},求(CRA)∩B.
(2)已知集合A={x|x2-x-2=0},B={x|ax-1=0},若A∪B=A,求實數(shù)a的值組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集為R,集合A={x|
2
x-1
≥1
},B={x|x2>4},則(CRB)∩A=( 。

查看答案和解析>>

同步練習冊答案