【題目】體育課的排球發(fā)球項目考試的規(guī)則是:每位學生最多可發(fā)球3次,一旦發(fā)球成功,則停止發(fā)球,否則一直發(fā)到3次為止.設學生一次發(fā)球成功的概率為p (p≠0),發(fā)球次數(shù)為X,若X的數(shù)學期望EX>1.75,則p的取值范圍是(
A.(0,
B.( ,1)
C.(0,
D.( ,1)

【答案】C
【解析】解:根據題意,學生發(fā)球次數(shù)為1即一次發(fā)球成功的概率為p,即P(X=1)=p, 發(fā)球次數(shù)為2即二次發(fā)球成功的概率P(X=2)=p(1﹣p),
發(fā)球次數(shù)為3的概率P(X=3)=(1﹣p)2 ,
則Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,
依題意有EX>1.75,則p2﹣3p+3>1.75,
解可得,p> 或p<
結合p的實際意義,可得0<p< ,即p∈(0,
故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是等比數(shù)列,Sn為數(shù)列{an}的前n項和,且a3=3,S3=9
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2 ,且{bn}為遞增數(shù)列,若cn= ,求證:c1+c2+c3+…+cn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,a,b,c分別為角A,B,C的對邊,csinC﹣asinA=( c﹣b)sinB.
(Ⅰ)求角A;
(Ⅱ)若a=1,求三角形ABC面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù))在極坐標系(與直角坐標系xOy取相同的長度單位.且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標方程;
(2)設圓C與直線l交于點A,B.若點P的坐標為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù)還是減函數(shù)?證明你的結論;
(2)當x>0時, 恒成立,求整數(shù)k的最大值;
(3)試證明:(1+12)(1+23)(1+34)…(1+n(n+1))>e2n3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,AC∩BD=O. (Ⅰ)證明:PC⊥BD
(Ⅱ)若E是PA的中點,且△ABC與平面PAC所成的角的正切值為 ,求二面角A﹣EC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,M是邊BC的中點,tan∠BAM= ,cos∠AMC=﹣ (Ⅰ)求角B的大小;
(Ⅱ)若角∠BAC= ,BC邊上的中線AM的長為 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)在(m,n)上的導函數(shù)為g(x),x∈(m,n),g(x)若的導函數(shù)小于零恒成立,則稱函數(shù)f(x)在(m,n)上為“凸函數(shù)”.已知當a≤2時, ,在x∈(﹣1,2)上為“凸函數(shù)”,則函數(shù)f(x)在(﹣1,2)上結論正確的是(
A.既有極大值,也有極小值
B.有極大值,沒有極小值
C.沒有極大值,有極小值
D.既無極大值,也沒有極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在三棱柱ABC﹣A1B1C1中,B1B⊥平面ABC,∠ABC=90°,B1B=AB=2BC=4,D、E分別是B1C1 , A1A的中點.
(1)求證:A1D∥平面B1CE;
(2)設M是的中點,N在棱AB上,且BN=1,P是棱AC上的動點,直線NP與平面MNC所成角為θ,試問:θ的正弦值存在最大值嗎?若存在,請求出 的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案