2.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)程序,則輸出的S=( 。
A.2.$\stackrel{•}{6}$B.3.0$\stackrel{•}{6}$C.4.1$\stackrel{•}{6}$D.4.5$\stackrel{•}{6}$

分析 根據(jù)已知中的流程圖,我們模擬程序的運(yùn)行結(jié)果,看變量n的值是否滿足判斷框的條件,當(dāng)判斷框的條件滿足時(shí)執(zhí)行循環(huán),不滿足時(shí)退出循環(huán),即可得到輸出結(jié)果.

解答 解:模擬執(zhí)行程序,可得:
S=0,n=1
滿足條件n≤5,S=2,n=3
滿足條件n≤5,S=2+$\frac{2}{3}$=$\frac{8}{3}$,n=5
滿足條件n≤5,S=$\frac{8}{3}$+$\frac{2}{5}$=$\frac{46}{15}$=3.0$\stackrel{•}{6}$,n=7
不滿足條件n≤5,退出循環(huán),輸出S的值為3.0$\stackrel{•}{6}$.
故選:B.

點(diǎn)評(píng) 本題主要考查的知識(shí)點(diǎn)是程序框圖,模擬循環(huán)的執(zhí)行過程是解答此類問題常用的辦法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.甲袋中有5個(gè)紅球,2個(gè)白球和3個(gè)黑球,乙袋中有4個(gè)紅球,3個(gè)白球和3個(gè)黑球.先從甲袋中隨機(jī)取出一球放入乙袋,分別以A1,A2和A3表示由甲袋取出的球是紅球,白球和黑球的事件;再從乙袋中隨機(jī)取出一球,以B表示由乙袋取出的球是紅球的事件.則下列結(jié)論①P(B)=$\frac{9}{22}$;②P(B|A1)=$\frac{2}{5}$;③事件B與事件A1相互獨(dú)立;④A1,A2,A3是兩兩互斥的事件.
其中正確的是①④(寫出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,點(diǎn)P是半徑為1的半圓弧$\widehat{AB}$上一點(diǎn),若AP長度為x,則直線AP與半圓弧$\widehat{AB}$所圍成的面積S關(guān)于x的函數(shù)圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=0,an+1=$\frac{n}{{S}_{n+1}+{S}_{n}}$(n∈N+).則a33=( 。
A.4(4$\sqrt{2}$-$\sqrt{31}$)B.4(4$\sqrt{2}$-$\sqrt{30}$)C.4($\sqrt{33}$-4$\sqrt{2}$)D.4($\sqrt{33}$-$\sqrt{31}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知fn(x)=(1+x)n
(1)若f2016(x)=a0+a1x+a2x2+…+a2015x2015+a2016x2016,求a1+a2+…+a2015+a2016的值;
(2)若g(x)=f6(x)+2f7(x)+3f8(x),求g(x)中含x6項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)z=2+bi(i為虛數(shù)單位),b為正實(shí)數(shù),且z2為純虛數(shù).
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)ω=$\frac{z}{1-i}$,求ω的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)對(duì)任意的x∈R都有f′(x)>f(x)恒成立,則( 。
A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)<2f(ln3)D.3f(ln2)與2f(ln3)的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知三棱錐的三視圖如圖所示,則該三棱錐最大側(cè)面積為(  )
A.4B.$\sqrt{15}$C.$\sqrt{7}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖(1)E,F(xiàn)分別是AC,AB的中點(diǎn),∠ACB=90°,∠CAB=30°,沿著EF將△AEF折起,記二面角A-EF-C的度數(shù)為θ.
(Ⅰ)當(dāng)θ=90°時(shí),即得到圖(2)求二面角A-BF-C的余弦值;
(Ⅱ)如圖(3)中,若AB⊥CF,求cosθ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案