計(jì)算:
(1)設(shè)a,b∈R,(i為虛數(shù)單位),求a+b的值.
(2)若從1,2,3,…,9這9個(gè)整數(shù)中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法共有m種.求m的值.
【答案】分析:(1)由題意可對(duì)復(fù)數(shù)代數(shù)式分子與分母都乘以1+2i,再進(jìn)行化簡(jiǎn)計(jì)算,再由復(fù)數(shù)相等的條件求出a和b的值,即可得答案;
(2)根據(jù)題意需要分三類(lèi)計(jì)算:①4個(gè)偶數(shù);②2個(gè)奇數(shù),2個(gè)偶數(shù);③4個(gè)奇數(shù),再由組合公式求解即可.
解答:解:(1)∵a+bi=
∴a=5,b=3,a+b=8.;
(2)根據(jù)題意偶數(shù)為2、4、6、8,奇數(shù)為1、3、5、7、9,
需要分三類(lèi)計(jì)算:①4個(gè)偶數(shù);②2個(gè)奇數(shù),2個(gè)偶數(shù);③4個(gè)奇數(shù),
則符合題意的取法共有:
m=CC+CC+CC=1+60+5=66(種)
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和組合公式,解題的關(guān)鍵是分子分母都乘以分母的共軛復(fù)數(shù)和明確進(jìn)行分類(lèi),復(fù)數(shù)的四則運(yùn)算是復(fù)數(shù)考查的重要內(nèi)容,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)設(shè)a,b∈R,a+bi=
11-7i1-2i
(i為虛數(shù)單位),求a+b的值.
(2)若從1,2,3,…,9這9個(gè)整數(shù)中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法共有m種.求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈R,定義:(1)設(shè)a<b,則a⊕b=a,a?b=b;(2)有括號(hào)的先計(jì)算括號(hào).那么下式 (2003⊕2004)?(2005⊕2006)的運(yùn)算結(jié)果為
2005
2005

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a、b∈R,定義:(1)設(shè)a<b,則a⊕b=a,a?b=b;(2)有括號(hào)的先計(jì)算括號(hào).那么下式 (2003⊕2004)?(2005⊕2006)的運(yùn)算結(jié)果為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

計(jì)算:
(1)設(shè)a,b∈R,a+bi=
11-7i
1-2i
(i為虛數(shù)單位),求a+b的值.
(2)若從1,2,3,…,9這9個(gè)整數(shù)中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法共有m種.求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案