設(shè)A={x∈Z||x|≤4},B={x|(x-1)(x2-5x+6)=0},C={a|y=(a2-7a+13)xa是冪函數(shù)}
求:(1)A、B、C;
(2)CA[CAB∪CAC].
分析:(1)求出集合A中絕對值不等式的解集,找出解集中的整數(shù)解確定出A,求出集合B中方程的解,確定出B,根據(jù)集合C中函數(shù)為冪函數(shù)得到系數(shù)為1,列出關(guān)于a的方程,求出方程的解得到a的值,確定出C;
(2)由全集A,找出不屬于B的部分,確定出B的補集,找出不屬于C的部分,確定出C的補集,找出既屬于B補集又屬于C補集的部分,確定出B補集與C補集的并集,在A中找出不屬于此并集的部分,即可確定出所求的集合.
解答:解:(1)由集合A中的不等式|x|≤4,解得:-4≤x≤4,
由x為整數(shù),得到x的值為-4,-3,-2,-1,0,1,2,3,4,
∴A={-4,-3,-2,-1,0,1,2,3,4},
由集合B中的方程變形得:(x-1)(x-2)(x-3)=0,
可得x=1或2或3,
∴B={1,2,3},
∵y=(a2-7a+13)xa是冪函數(shù),
∴a2-7a+13=1,即(a-3)(a-4)=0,
解得:a=3或a=4,
∴C={3,4};
(2)∵A={-4,-3,-2,-1,0,1,2,3,4},B={1,2,3},C={3,4},
∴CAB={-4,-3,-2,-1,0,4},CAC={-4,-3,-2,-1,0,1,2},
∴CAB∪CAC={-4,-3,-2,-1,0,1,2,4},
則CA[CAB∪CAC]={3}.
點評:此題考查了交、并、補集的混合運算,熟練掌握交、并、補集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、設(shè)A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:
(1)A∩(B∩C);
(2)A∩CA(B∪C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)A={x∈Z||x|≤6},B={1,2,3},C={3,4,5,6},求:
①A∩(B∩C);  
②)A∩?A(B∪C).
(2)計算:lg25+lg2•lg50+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},則B的元素個數(shù)是( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={x∈Z||x|<6},B={1,2,3},C={3,4,5},
求:(1)A∪(B∩C);
(2)A∩?A(B∪C)

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚敐澶婄闁挎繂鎲涢幘缁樼厱闁靛牆鎳庨顓㈡煛鐏炶鈧繂鐣烽锕€唯闁挎棁濮ら惁搴♀攽閻愬樊鍤熷┑顔炬暬閹虫繃銈i崘銊у幋闂佺懓顕崑娑氱不閻樼粯鈷戠紒瀣皡閺€缁樸亜閵娿儲顥㈡鐐茬墦婵℃瓕顦柛瀣崌濡啫鈽夊▎蹇旀畼闁诲氦顫夊ú鏍ь嚕閸洖绠為柕濞垮労濞撳鎮归崶顏勭处濠㈣娲熷缁樻媴閾忕懓绗℃繛鎾寸椤ㄥ﹤鐣烽弶搴撴婵ê褰夌粭澶娾攽閻愭潙鐏﹂懣銈嗕繆閹绘帞澧涚紒缁樼洴瀹曞崬螣閸濆嫷娼旀俊鐐€曠换鎺楀窗閺嵮屾綎缂備焦蓱婵挳鏌ら幁鎺戝姢闁靛棗锕娲閳哄啰肖缂備胶濮甸幑鍥偘椤旇法鐤€婵炴垶鐟﹀▍銏ゆ⒑鐠恒劌娅愰柟鍑ゆ嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆戠矆閸愨斂浜滈柡鍥ф濞层倝鎮″鈧弻鐔告綇妤e啯顎嶉梺绋款儐閸旀瑩寮诲☉妯锋瀻闊浄绲炬晥闂備浇顕栭崰妤呮偡瑜忓Σ鎰板箻鐎涙ê顎撻梺鍛婄箓鐎氱兘鍩€椤掆偓閻倿寮诲☉銏犖╅柕澹啰鍘介柣搴㈩問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷