【題目】銷售甲、乙兩種商品所得利潤(rùn)分別是萬(wàn)元,它們與投入資金萬(wàn)元的關(guān)系分別為其中都為常數(shù),函數(shù)對(duì)應(yīng)的曲線如圖所示.

(1)求函數(shù)的解析式;

(2)若該商場(chǎng)一共投資8萬(wàn)元經(jīng)銷甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.

【答案】(1),(2)萬(wàn)元.

【解析】

試題分析:1根據(jù)所給的圖象知,兩曲線的交點(diǎn)坐標(biāo)為8,,由此列出關(guān)于m,a的方程組,解出m,a的值,即可得到函數(shù)的解析式;2對(duì)甲種商品投資x萬(wàn)元,對(duì)乙種商品投資8-x)(萬(wàn)元,根據(jù)公式可得甲、乙兩種商品的總利潤(rùn)y萬(wàn)元關(guān)于x的函數(shù)表達(dá)式;再利用配方法確定函數(shù)的對(duì)稱軸,結(jié)合函數(shù)的定義域,即可求得總利潤(rùn)y的最大值

試題解析:1由題意,解得,

又由題意

2設(shè)銷售甲商品投入資金萬(wàn)元,則乙投入萬(wàn)元

1,

,則有

當(dāng)時(shí),取最大值

答:該商場(chǎng)所獲利潤(rùn)的最大值為萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—1:幾何證明選講

如圖,圓周角BAC的平分線與圓交于點(diǎn)D,過(guò)點(diǎn)D的切線與弦AC的延長(zhǎng)線交于點(diǎn) EADBC于點(diǎn)F

)求證:BCDE;

)若DE、CF四點(diǎn)共圓,且,求BAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)正北海里有一個(gè)雷達(dá)觀測(cè)站,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)北偏東且與點(diǎn)相距海里的位置,經(jīng)過(guò)分鐘又測(cè)得該船已行駛到點(diǎn)北偏東(其中且與點(diǎn)相距海里的位置.

(1)求該船的行駛速度(單位:海里/小時(shí));

(2)若該船不改變航行方向繼續(xù)行駛,判斷它是否會(huì)進(jìn)入警戒水域,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對(duì)于定義域內(nèi)的任意,恒成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)定義在區(qū)間內(nèi),對(duì)于任意的,有,且當(dāng)時(shí),

(1)驗(yàn)證函數(shù)是否滿足這些條件;

(2)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;

(3)若,求方程的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶一中開(kāi)展了豐富多彩的社團(tuán)文化活動(dòng),甲,乙,丙三位同學(xué)在被問(wèn)到是否參加過(guò)街舞社,動(dòng)漫社,器樂(lè)社這三個(gè)社團(tuán)時(shí),

甲說(shuō):我參加過(guò)的社團(tuán)比乙多,但沒(méi)有參加過(guò)動(dòng)漫社;

乙說(shuō):我沒(méi)有參加過(guò)器樂(lè)社;

丙說(shuō):我們?nèi)齻(gè)人都參加過(guò)同一個(gè)社團(tuán),由此判斷乙參加過(guò)的社團(tuán)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1的值;

2判斷函數(shù)的單調(diào)性,并用定義證明;

3當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)幾何體的三視圖如圖所示.

(1)求此幾何體的表面積;

(2)如果點(diǎn)在正視圖中所示位置:為所在線段中點(diǎn),為頂點(diǎn),求在幾何體表面上,從點(diǎn)到點(diǎn)的最短路徑的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究型學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如下表:

使用智能手機(jī)

不使用智能手機(jī)

總計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

4

8

12

學(xué)習(xí)成績(jī)不優(yōu)秀

16

2

18

總計(jì)

20

10

30

計(jì)算得K2=10,則下列選項(xiàng)正確的是(  )

A. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響

B. 有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響

C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響

D. 在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響

查看答案和解析>>

同步練習(xí)冊(cè)答案