已知函數(shù)數(shù)學(xué)公式,其中a,b∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在(1,2)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

解:求導(dǎo)得:f′(x)=1-,
(1)f′(x)≥0,
當(dāng)a=0時(shí),f′(x)=1,函數(shù)是增函數(shù);
當(dāng)a<0時(shí),f′(x)=1->0,故函數(shù)在(-∞,0)與(0,+∞)上都是增函數(shù)
當(dāng)a>0時(shí),f′(x)=1->0,得x>或x<-故函數(shù)在(-∞,-)與(,+∞)上都是增函數(shù),在(-,0)與(0,)都是減函數(shù).
(2)函數(shù)f(x)在(1,2)上為單調(diào)函數(shù)
由(1)知a≤0時(shí),滿足題意,
當(dāng)a>0時(shí),函數(shù)在(,+∞)上是增函數(shù),在(0,)是減函數(shù),故當(dāng)≤1或≥2時(shí),符合題意解得0<a≤1或a≥4,
綜上,符合條件的實(shí)數(shù)a的取值范圍是(-∞,1]∪[4,+∞)
分析:(1)求出函數(shù)的導(dǎo)數(shù),得f′(x)=1-,由于a∈R,分a=0,a<0,a>0三類研究函數(shù)的單調(diào)性即可.
(2)由(1)的結(jié)論,討論在哪些情況下函數(shù)的導(dǎo)數(shù)在(1,2)上符號(hào)恒正或者恒負(fù)即可.
點(diǎn)評(píng):本題利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解題的關(guān)鍵是理解并掌握函數(shù)的導(dǎo)數(shù)的符號(hào)與函數(shù)的單調(diào)性的關(guān)系,此類題一般有兩類題型,一類是利用導(dǎo)數(shù)符號(hào)得出單調(diào)性,一類是由單調(diào)性得出導(dǎo)數(shù)的符號(hào),本題(1)屬于第一種類型.(2)屬于第二種題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)(其中A、B、是實(shí)數(shù),且)的最小正周期是2,且當(dāng)時(shí),取得最大值2;

  (1)、求函數(shù)的表達(dá)式;

  (2)、在閉區(qū)間上是否存在的對(duì)稱軸?如果存在,求出其對(duì)稱軸的方程,

        若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省揭陽(yáng)一中高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市臨川二中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知函數(shù),其中a,b為常數(shù).
(1)當(dāng)a=6,b=3時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若任取a∈[0,4],b∈[0,3],求函數(shù)f(x)在R上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年《龍門亮劍》高三數(shù)學(xué)(理科)一輪復(fù)習(xí):第2章第10節(jié)(人教AB通用)(解析版) 題型:解答題

已知函數(shù),其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若對(duì)于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三上學(xué)期期末考試文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知函數(shù)(其中a,b為常數(shù)且)的反函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(4,1)和B(16,3)。

(1)求a,b的值;

(2)若不等式上恒成立,求實(shí)數(shù)m的取值范圍。

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案