某小區(qū)要建一座八邊形的休閑小區(qū),它的主體造型的平面圖是由二個相同的矩形

構(gòu)成的面積為的十字型地域,計劃在正方形上建一座“觀景花壇”,
造價為元/,在四個相同的矩形上(圖中陰影部分)鋪花崗巖地坪,造價為
元/,再在四個空角(如等)上鋪草坪,造價為元/.
(1)設(shè)總造價為元,長為,試建立的函數(shù)關(guān)系;
(2)當為何值時,最小?并求這個最小值。


解:(1)
依題意得:     ……6分
(2)∵,當且僅當時取等號,
,∴         ……12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)關(guān)于直線對稱的函數(shù)為,又函數(shù)的導(dǎo)函數(shù)為,記
(Ⅰ)設(shè)曲線在點處的切線為, 與圓相切,求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)求函數(shù)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù)的兩條切線PM、PN,切點分別為M、N.
(I)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(II)設(shè)|MN|=,試求函數(shù)的表達式;
(III)在(II)的條件下,若對任意的正整數(shù),在區(qū)間內(nèi),總存在m+1個數(shù)使得不等式成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(Ⅰ)當有最小值為2時,求的值;
(Ⅱ)當時,有恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知奇函數(shù)f(x)是定義在(-2,2)上的減函數(shù),若f(m-1)+f(2m-1)>0,則實數(shù)m的范圍是(   )
A.<m<B.<m<C.<m<D.<m<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),那么的最小值是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在實數(shù)的原有運算法則中,我們補充定義新運算“”如下:當時,;當時,。則函數(shù)的最大值等于(“·”和“-”仍為通常的乘法和減法)                   (   )
A. B.1  C.6 D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù) 如果上恒成立,則的取值范圍是 ________  。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案