10.如圖,四棱錐S-ABCD中,AB∥CD,BC⊥CD,側(cè)面SAB為等腰直角三角形.SA=SB=2,AB=2DC,SD=1,BC=$\sqrt{3}$.
(1)證明:SD⊥平面SAB.
(2)求四棱錐S-ABCD的表面積.

分析 (1)取AB中點O,連結(jié)SO、DO,推導出AB⊥平面SDO,從而AB⊥SD,再求出AS⊥SD,由此能證明SD⊥平面SAB.
(2)四棱錐S-ABCD的表面積S=S梯形ABCD+S△ADS+S△SDC+S△SBC+S△SAB,由此能求出結(jié)果.

解答 證明:(1)取AB中點O,連結(jié)SO、DO,
∵AB∥CD,BC⊥CD,側(cè)面SAB為等腰直角三角形.
SA=SB=2,AB=2DC,SD=1,BC=$\sqrt{3}$,
∴SO⊥AB,DO⊥AB,AB=$\sqrt{4+4}$=2$\sqrt{2}$,
∵SO∩DO=O,∴AB⊥平面SDO,
∵SD?平面SDO,∴AB⊥SD,
∴AO=BO=CD=$\sqrt{2}$,AD=BD=$\sqrt{2+3}$=$\sqrt{5}$,
∴AS2+SD2=AD2,∴AS⊥SD,
∵AB∩AS=A,∴SD⊥平面SAB.
解:(2)四棱錐S-ABCD的表面積:
S=S梯形ABCD+S△ADS+S△SDC+S△SBC+S△SAB
=$\frac{1}{2}(\sqrt{2}+2\sqrt{2})×\sqrt{3}$+$\frac{1}{2}×2×1$+$\frac{1}{2}×1×\sqrt{2}$+$\frac{1}{2}×2×\sqrt{3-1}$+$\frac{1}{2}×2×2$
=$\frac{3\sqrt{6}+6+3\sqrt{2}}{2}$.

點評 本題考查線面垂直的證明,考查四棱錐的表面積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.設A,B是非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意一個元素x,在集合中B都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射,設f:x→$\sqrt{x}$是從集合A到集合B的一個映射.①若A={0,1,2},則A∩B={0,1};②若B={1,2},則A∩B={1}或∅.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設二次函數(shù)f(x)的圖象關于直線x=2對稱與函數(shù)y=x2+2x-1的圖象開口大小和方向相同,且f(0)=3,求f(x)在x∈[-1,3]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=x2+bx+c,其對稱軸為y軸(其中b,c為常數(shù))
(Ⅰ)求實數(shù)b的值;
(Ⅱ)記函數(shù)g(x)=f(x)-2,若函數(shù)g(x)有兩個不同的零點,求實數(shù)c的取值范圍;
(Ⅲ)求證:不等式f(c2+1)>f(c)對任意c∈R成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若x>0,y>0且2x+y=3,則$\frac{1}{x}+\frac{1}{y}$的最小值是$\frac{1}{3}(3+2\sqrt{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.設D是線段BC的中點,且$\overrightarrow{AB}$+$\overrightarrow{AC}$=4$\overrightarrow{AE}$,則( 。
A.$\overrightarrow{AD}=2\overrightarrow{AE}$B.$\overrightarrow{AD}=4\overrightarrow{AE}$C.$\overrightarrow{AD}=2\overrightarrow{EA}$D.$\overrightarrow{AD}=4\overrightarrow{EA}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知等差數(shù)列{an}的公差d≠0,首項a1=d,數(shù)列{an2}的前n項和為Sn,等比數(shù)列{bn}是公比q小于1的正弦有理數(shù)列,首項b1=d2,其前n項和為Tn,若$\frac{{S}_{3}}{{T}_{3}}$是正整數(shù),則q的可能取值為( 。
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.關于函數(shù)$f(x)=4sin(2x+\frac{π}{3})(x∈R)$有下列命題,其中正確的是( 。
①y=f(x)的表達式可改寫為$y=4cos(2x-\frac{π}{6})$;
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關于點$(-\frac{π}{6},0)$對稱;
④y=f(x)的圖象關于直線x=$\frac{5π}{6}$對稱.
A.①②B.③④C.D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=lnx+2x-6有唯一的零點在區(qū)間(2,3)內(nèi),且在零點附近的函數(shù)值用二分法逐次計算,得到數(shù)據(jù)如表所示.那么當精確度為0.02時,方程lnx+2x-6=0的一個近似根為( 。
x2.52.531252.5468752.56252.6252.75
f(x)0.0840.0090.0290.0660.2150.512
A.2.5B.2.53C.2.54D.2.5625

查看答案和解析>>

同步練習冊答案