給出下列命題:①向量a與b平行,則a與b的方向相反或者相同;②△ABC中,必有;
③四邊形ABCD是平行四邊形的充要條件是;④若非零向量a與b方向相同或相反,則a+b與a、b之一方向相同.其中正確的命題為    
【答案】分析:本題是一個概念辨析問題,①中未注意零向量,在②中首尾相連的向量的和是兩向量,在③中兩個向量相等,對應的這兩條四邊形的邊平行且相等,在④中+有可能為零向量.
解答:解:①中未注意零向量,當兩個向量中有零向量時,所以①錯誤,
在②中首尾相連的向量的和是兩向量,
在③中兩個向量相等,根據(jù)向量相等的條件知,對應的這兩條四邊形的邊平行且相等,
在④中+有可能為零向量,當+是零向量時,這種說法是錯誤的,
只有②③正確.
故答案為:②③
點評:本題主要考查向量的共線,向量的加減運算,是一個概念題,考查的內容比較多,是一個綜合題.解題的關鍵是抓住向量的有關概念.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題中
①向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°;
a
b
>0,是
a
b
的夾角為銳角的充要條件;
③將函數(shù)y=|x-1|的圖象按向量
a
=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|;
④若(
AB
+
AC
)•(
AB
-
AC
)  =0
,則△ABC為等腰三角形;
以上命題正確的個數(shù)是( 。
A、4個B、1個C、3個D、2個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題中
①向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為300;
a
b
>0,是
a
b
的夾角為銳角的充要條件;
③將函數(shù)y=|x-1|的圖象按向量
a
=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|;
④若(
AB
+
AC
)•(
AB
-
AC
)=0,則△ABC為等腰三角形;
以上命題正確的是
 
(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題中
①向量
a
,
b
|
a
|=|
b
|=|
a
-
b
|
,則
a
|
a
+
b
|
角為30°;
a
b
>0,是
a
、
b
夾角為銳角的充要條件;
③將y=|x-1|的圖象按向量
a
=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|;
④若
AB
BC
+
AB2
=0,△ABC直角三角形.
以上命題正確的是
①③④
①③④
(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:①向量a與b平行,則a與b的方向相反或者相同;②△ABC中,必有
AB
+
BC
+
CA
=0

③四邊形ABCD是平行四邊形的充要條件是
AB
=
DC
;④若非零向量a與b方向相同或相反,則a+b與a、b之一方向相同.其中正確的命題為
 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省茂名市高州市長坡中學高三(下)期初數(shù)學試卷(文科)(解析版) 題型:解答題

給出下列命題中
①向量滿足,則的夾角為30;
>0,是的夾角為銳角的充要條件;
③將函數(shù)y=|x-1|的圖象按向量=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|;
④若(+)•(-)=0,則△ABC為等腰三角形;
以上命題正確的是    (注:把你認為正確的命題的序號都填上)

查看答案和解析>>

同步練習冊答案