若實(shí)數(shù)x,y滿足方程組=

A、0   B、   C、   D、1

 

【答案】

D

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知圓的方程是x2+y2=4,求斜率等于1的圓的切線的方程;
(2)若實(shí)數(shù)x,y,t,滿足
x2
9
+
y2
16
=1
且t=x+y,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)在x=
t+2
2
處取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表達(dá)式;
(2)若任意實(shí)數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項(xiàng)式,n∈N+),試用t表示an和bn
(3)設(shè)圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項(xiàng)都是正數(shù)的等比數(shù)列,記Sn為前n個(gè)圓的面積之和,求rn,Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•濟(jì)南二模)下列四種說法中正確的是

①“若am2<bm2,則a<b”的逆命題為真;
②線性回歸方程對(duì)應(yīng)的直線
y
=
b
x+
a
一定經(jīng)過其樣本數(shù)據(jù)點(diǎn) (x1,y1),(x2,y2),…,(xn,yn)中的一個(gè)點(diǎn);
③若實(shí)數(shù)x,y∈[0,1],則滿足:x2+y2>1的概率為
π
4
;
④用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n•1•3…(2n-1)(n∈N*)時(shí),從“k”到“k+1”的證明,左邊需增添的一個(gè)因式是2(2k+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)k,b,使得函數(shù)f(x)和g(x)對(duì)其定義域上的任意實(shí)數(shù)x同時(shí)滿足:f(x)≥kx+b且g(x)≤kx+b,則稱直線:l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx(其中e為自然對(duì)數(shù)的底數(shù)).試問:
(1)函數(shù)f(x)和g(x)的圖象是否存在公共點(diǎn),若存在,求出交點(diǎn)坐標(biāo),若不存在,說明理由;
(2)函數(shù)f(x)和g(x)是否存在“隔離直線”?若存在,求出此“隔離直線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:請(qǐng)考生在下列兩題中任選一題作答.若兩題都做,則按做的第一題評(píng)閱計(jì)分.本題共5分.
(1)(不等式選講)若實(shí)數(shù)x、y滿足|x|+|y|≤1,則x2-xy+y2的最大值為
1
1

(2)(坐標(biāo)系與參數(shù)方程)若直線
x=1-2t
y=2+3t
(t為參數(shù))與直線4x+ky=1垂直,則常數(shù)k=
-6
-6

查看答案和解析>>

同步練習(xí)冊(cè)答案