分析 根據(jù)平面與空間之間的類比推理,由點(diǎn)類比點(diǎn)或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.
解答 解:若四面體內(nèi)切球半徑為R,四個(gè)面的面積為S1,S2,S3,S4,則四面體的體積$V=\frac{1}{3}R({S_1}+{S_2}+{S_3}+{S_4})$.
故答案為若四面體內(nèi)切球半徑為R,四個(gè)面的面積為S1,S2,S3,S4,則四面體的體積$V=\frac{1}{3}R({S_1}+{S_2}+{S_3}+{S_4})$.
點(diǎn)評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 4 | 5 | 6 | 8 |
y | 3 | 4 | 6 | 5 | 7 |
不得禽流感 | 得禽流感 | 總計(jì) | |
服藥 | |||
不服藥 | |||
總計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
價(jià)格x | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
需求量y | 6.2 | 7.5 | 8.0 | 8.5 | 9.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | r越大,兩變量的線性相關(guān)性越強(qiáng) | B. | R2越大,兩變量的線性相關(guān)性越強(qiáng) | ||
C. | r的取值范圍為(-∞,+∞) | D. | R2的取值范圍為[0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 5 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $x=-\frac{11π}{24}$ | B. | $x=\frac{π}{8}$ | C. | $x=\frac{π}{4}$ | D. | $x=\frac{11π}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4或-$\frac{5}{2}$ | B. | 4或-2 | C. | 5或-2 | D. | 6或-$\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com