命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是( 。
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0
考點(diǎn):命題的否定
專題:簡易邏輯
分析:全稱命題的否定是特稱命題,寫出結(jié)果即可.
解答: 解:全稱命題的否定是特稱命題,
命題“?x∈(0,+∞),x3-x2+1≥0,”的否定是?x∈(0,+∞),x3-x2+1<0.
故選:C.
點(diǎn)評(píng):本題考查命題的否定,注意全稱命題與特稱命題的否定關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)為(  )
①經(jīng)過三點(diǎn)確定一個(gè)平面;
②梯形可以確定一個(gè)平面;
③兩兩相交的三條直線最多可以確定三個(gè)平面;
④如果兩個(gè)平面有三個(gè)公共點(diǎn),則這兩個(gè)平面重合.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正方體內(nèi)接于一個(gè)球,過球心作一個(gè)截面,則截面不可能的圖形為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們知道十進(jìn)制數(shù)有10個(gè)數(shù)碼即0~9,進(jìn)位規(guī)則是“逢十進(jìn)一”,如47+56=103;由此可知八進(jìn)制數(shù)有8個(gè)數(shù)碼即0~7,進(jìn)位規(guī)則是“逢八進(jìn)一”,則在八進(jìn)制下做如下運(yùn)算47+56=( 。
A、85B、103
C、125D、185

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是( 。
A、42   42
B、45  46
C、45  42
D、47  48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
1
-1
 
2
4

(Ⅰ)求A的逆矩陣A-1;
(Ⅱ)求矩陣A的特征值λ1、λ2和對(duì)應(yīng)的特征向量
α1
、
α2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字0、1、3、4、5、8組成沒有重復(fù)數(shù)字的四位數(shù).
(Ⅰ)可以組成多少個(gè)不同的四位偶數(shù)?
(Ⅱ)可以組成多少個(gè)不同的能被5整除的四位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知f(x)=
a•2x+a-2
2x
是奇函數(shù),
(1)求a的值;
(2)判斷f(x)的單調(diào)性,x∈R;
(3)若方程f(x)=m(m>0)在(-∞,0)上有解,求證:-
1
3
<f(m)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一工廠生產(chǎn)A,B,C三種商品,每種商品都分為一級(jí)和二級(jí)兩種標(biāo)準(zhǔn),某月工廠產(chǎn)量如下表(單位:件):
A B C
一級(jí) 100 150 400
二級(jí) 300 450 600
(Ⅰ)用分層抽樣的方法在C種商品中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2件商品,求至少有1件一級(jí)品的概率;
(Ⅱ)用隨機(jī)抽樣的方法從B類商品中抽取8件,經(jīng)檢測(cè)它們的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2.把這8件商品的得分看成一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與這8個(gè)數(shù)的平均數(shù)之差的絕對(duì)值不超過0.5的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案