已知函數(shù)f(x)的定義域為R,對任意實數(shù)m,n均有f(mn)=f(m)+f(n)1,且f()=2,又當x>時,有f(x)>0.

(1)f()的值;

(2)證明:f(x)是單調(diào)遞增函數(shù);

(3)解不等式:1f()f(1)+f(x).

 

答案:
解析:

(1)解:令m=n=0,則f(0)=2f(0)-1.∴f(0)=1.又f()=f[+(-)]=f()+f(-)-1,

f(0)=2+f(-)-1.∴f(-)=f(0)-1f(-)=0.

(2)證明:設x1、x2R,則x1x2<0,則x2x1>0.∴x2x1>-,又x>-時,f(x)>0.

f(x2x1)>0.又f(x2)-f(x1)=f[(x2x1)+x1]-f(x1)=f(x2x1)+f(-)-1=f(x2x1)>0,∴f(x2)>f(x1).故f(x)在R上單調(diào)遞增.

(3)解:由1+f(f(1)+f(x),則f(f(1)+f(x)-1,f(f(1+x),又f(x)為增函數(shù),∴1+x,解之得x0.

點撥:本題是第6題的擴展與延伸,要注意他們之間的區(qū)別與聯(lián)系.

 


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對任意x∈[1,2],f′(x)>a2恒成立,求實數(shù)a的取值范圍;
(II)設函數(shù)f(x)的兩個極值點分別為x1,x2判斷下列三個代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個為定值?并且是定值請求出;若不是定值,請把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

問題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請求出上述結果,并用此方法求解下面問題:
問題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標為
1
2
的點P是M,N的中點.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當f(x)的定義域為[a+
1
2
,a+1]
時,求f(x)的值域;
(2)試問對定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個定值?若是,求出這個定值;若不是,說明理由;
(3)設函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點.
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關于n的解析式;
(3)對(2)中的Tn,設數(shù)列{an}滿足a1=2,當n≥2時,an=4Tn+2,問是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案