已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz(Rez,Imz).

(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;

(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上.寫(xiě)出線段s的表達(dá)式,并說(shuō)明理由;

(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫(xiě)下表(表中s1是(1)中圓C1的對(duì)應(yīng)線段).

答案:
解析:

  證明:(1)由題意可得,解方程,得

  ,…………………2分

  點(diǎn)

  將點(diǎn)代入圓的方程,等號(hào)成立,

  在圓上.…………………………4分

  (2)[解法一]當(dāng),即時(shí),解得,

  點(diǎn)

  由題意可得,整理后得,……6分

  ,,

  .………

  線段為:

  若是線段上一點(diǎn)(非端點(diǎn)),則實(shí)系數(shù)方程為

  

  此時(shí),且點(diǎn)、在圓上.

……10分

  [解法二]設(shè)是原方程的虛根,則

  解得

  由題意可得,.………………………③

  解①、②、③得.…………………6分

  以下同解法一.

  [解](3)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫(xiě)出線段s的表達(dá)式,并說(shuō)明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫(xiě)表(表中s1是(1)中圓C1的對(duì)應(yīng)線段).
    線段s與線段s1的關(guān)系 m、r的取值或表達(dá)式 
 s所在直線平行于s1所在直線  
 s所在直線平分線段s1  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海高考真題 題型:解答題

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz(Rez,Imz),
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上。寫(xiě)出線段s的表達(dá)式,并說(shuō)明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫(xiě)表(表中s1是(1)中圓C1的對(duì)應(yīng)線段)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知復(fù)數(shù)z1滿足(1+i)z1=3+i,復(fù)數(shù)z滿足
(1)求復(fù)數(shù)z;
(2)設(shè)z是關(guān)于x的實(shí)系數(shù)方程x2-px+q=0的一個(gè)根,求p、q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

已知z是實(shí)系數(shù)方程x2+2bx+c=0的虛根,記它在直角坐標(biāo)平面上的對(duì)應(yīng)點(diǎn)為Pz,
(1)若(b,c)在直線2x+y=0上,求證:Pz在圓C1:(x-1)2+y2=1上;
(2)給定圓C:(x-m)2+y2=r2(m、r∈R,r>0),則存在唯一的線段s滿足:①若Pz在圓C上,則(b,c)在線段s上;②若(b,c)是線段s上一點(diǎn)(非端點(diǎn)),則Pz在圓C上、寫(xiě)出線段s的表達(dá)式,并說(shuō)明理由;
(3)由(2)知線段s與圓C之間確定了一種對(duì)應(yīng)關(guān)系,通過(guò)這種對(duì)應(yīng)關(guān)系的研究,填寫(xiě)表(表中s1是(1)中圓C1的對(duì)應(yīng)線段).

查看答案和解析>>

同步練習(xí)冊(cè)答案