已知數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.數(shù)列滿足的前項(xiàng)和.

(Ⅰ)求;

(Ⅱ)設(shè)同時(shí)滿足條件:①;②(是與無(wú)關(guān)的常數(shù))的無(wú)窮數(shù)列叫“特界”數(shù)列.判斷(1)中的數(shù)列是否為“特界”數(shù)列,并說(shuō)明理由.

 

【答案】

(I)解:,                         …………2分

,                    …………4分

.                                    …………7分

(Ⅱ)解:由,

,故數(shù)列適合條件①;            …………………10分

    又,故當(dāng)時(shí),有最大值20,

,故數(shù)列適合條件②.                                …………13分

綜上,數(shù)列是“特界”數(shù)列.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的平方差是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
(Ⅱ)已知數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對(duì)?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的平方差是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.

(Ⅰ)若數(shù)列既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;

(Ⅱ)已知數(shù)列是首項(xiàng)為,公方差為的等方差數(shù)列,數(shù)列的前項(xiàng)和為,且滿足.若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省荊州市公安縣三中高三(上)元月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的平方差是同一個(gè)常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
(Ⅱ)已知數(shù)列{an}是首項(xiàng)為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項(xiàng)和為Sn,且滿足.若不等式對(duì)?n∈N*恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案