【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項(xiàng)公式.
(2)若等比數(shù)列{bn}滿(mǎn)足b1=8,b2=a1+a2+a3 , 求{bn}的前n項(xiàng)和公式.
【答案】
(1)解:∵{an}為等差數(shù)列,且a3=﹣6,a6=0,
∴ ,解得a1=﹣10,d=2,
∴an=﹣10+(n﹣1)×2=2n﹣12
(2)解:∵等比數(shù)列{bn}滿(mǎn)足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,
∴q= = =﹣3,
∴{bn}的前n項(xiàng)和公式:
Sn= =2﹣2(﹣3)n
【解析】(1)由已知條件利用等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,由此能求出an=2n﹣12.(2)由等比數(shù)列{bn}滿(mǎn)足b1=8,b2=a1+a2+a3=﹣10﹣8﹣6=﹣24,求出q= = =﹣3,由此能求出{bn}的前n項(xiàng)和公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線(xiàn)相切.
(1)求直線(xiàn)被圓所截得的弦的長(zhǎng);
(2)過(guò)點(diǎn)作兩條與圓相切的直線(xiàn),切點(diǎn)分別為求直線(xiàn)的方程;
(3)若與直線(xiàn)垂直的直線(xiàn)與圓交于不同的兩點(diǎn),若為鈍角,求直線(xiàn) 在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 點(diǎn)(n, )在直線(xiàn)y= x+ 上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 并求使不等式Tn> 對(duì)一切n∈N*都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最小正周期是.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a、b、c成等比數(shù)列,非零實(shí)數(shù)x,y分別是a與b,b與c的等差中項(xiàng).
(1)已知 ①a=1、b=2、c=4,試計(jì)算 的值;
②a=﹣1、b= 、c=﹣ ,試計(jì)算 的值
(2)試推測(cè) 與2的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), , .
(1)設(shè)函數(shù),若在區(qū)間上單調(diào),求實(shí)數(shù)的取值范圍;
(2)求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com