18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+2x,-2≤x≤0\\ f({x-1})+1,0<x≤2\end{array}\right.$,則關(guān)于x的方程x-f(x)=0在[-2,2]上的根的個(gè)數(shù)為( 。
A.3B.4C.5D.6

分析 依次求出f(x)在(0,1]和(1,2]上的解析式,解方程即可得出根的個(gè)數(shù).

解答 解:(1)當(dāng)-2≤x≤0時(shí),令f(x)=x得x2+2x=x,解得x=0或x=-1.
(2)當(dāng)x∈(0,1]時(shí),f(x)=(x-1)2+2(x-1)+1=x2
令f(x)=x得x2=x,解得x=0(舍)或x=1.
(3)當(dāng)x∈(1,2]時(shí),f(x)=(x-1)2+1=x2-2x+2,
令f(x)=x得x2-2x+2=x,解得x=1(舍)或x=2.
∴方程x-f(x)=0在[-2,2]上有4個(gè)根.
故選:B.

點(diǎn)評(píng) 本題考查來了函數(shù)解析式的求解,一元二次方程的解法,分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)等比數(shù)列{an}的公比q=2,前n項(xiàng)和為Sn,則$\frac{{S}_{4}}{{a}_{4}}$=(  )
A.2B.4C.$\frac{15}{8}$D.$\frac{17}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“三段論”是演繹推理的一般形式.現(xiàn)給出一段推理:①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形.那么,這段推理中的小前提是( 。
A.B.C.D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.關(guān)于衡量兩個(gè)變量y與x之間線性相關(guān)關(guān)系的相關(guān)系數(shù)r與相關(guān)指數(shù)R2中,下列說法中正確的是( 。
A.r越大,兩變量的線性相關(guān)性越強(qiáng)B.R2越大,兩變量的線性相關(guān)性越強(qiáng)
C.r的取值范圍為(-∞,+∞)D.R2的取值范圍為[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2017年4月14日,某財(cái)經(jīng)頻道報(bào)道了某地建筑市場存在違規(guī)使用未經(jīng)淡化海砂的現(xiàn)象.為了研究使用淡化海砂與混凝土耐久性是否達(dá)標(biāo)有關(guān),某大學(xué)實(shí)驗(yàn)室隨機(jī)抽取了60個(gè)樣本,得到了相關(guān)數(shù)據(jù)如表:
混凝土耐久性達(dá)標(biāo)混凝土耐久性不達(dá)標(biāo)總計(jì)
使用淡化海砂25t30
使用未經(jīng)淡化海砂s
總計(jì)4060
(Ⅰ)根據(jù)表中數(shù)據(jù),求出s,t的值;
(Ⅱ)利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下認(rèn)為使用淡化海砂與混凝土耐久性是否達(dá)標(biāo)有關(guān)?
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0250.0100.001
k02.7063.8415.0246.63510.828
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$y=sin({4x-\frac{π}{3}})$的圖象的一條對(duì)稱軸方程是(  )
A.$x=-\frac{11π}{24}$B.$x=\frac{π}{8}$C.$x=\frac{π}{4}$D.$x=\frac{11π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如圖所示(x(噸)為買進(jìn)蔬菜的質(zhì)量,y(天)為銷售天數(shù)):
x234567912
y12334568
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計(jì)需要銷售多少天.
參考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|3x+1<0},B={x|6x2-x-1≤0},則A∩B=(  )
A.$[-\frac{1}{3},\frac{1}{2}]$B.C.$(-∞,\frac{1}{3})$D.$\{\frac{1}{3}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在數(shù)列{an}中,若$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$+$\sqrt{2}$,a1=8,則數(shù)列{an}的通項(xiàng)公式為( 。
A.an=2(n+1)2B.an=4(n+1)C.an=8n2D.an=4n(n+1)

查看答案和解析>>

同步練習(xí)冊(cè)答案