如圖,在四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一點.
(Ⅰ)若AD=3OD,求證:CD∥平面PBO;
(Ⅱ)若PD=AB=BC=1,求二面角C-PD-A的余弦值.
考點:用空間向量求平面間的夾角,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件推導(dǎo)出四邊形BCDO為平行四邊形,由此能證明CD∥平面PBO.
(Ⅱ)以A為原點,以AB所在直線為x軸,AD所在直線為y軸,過點A垂直于平面ABCD的直線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C-PD-A的余弦值.
解答: (Ⅰ)證明:∵AD=3BC,BC∥AD,
∴OD
.
BC,∴四邊形BCDO為平行四邊形,
∴CD∥BO,又BO?平面PBO,CD不包含于平面PBO,
∴CD∥平面PBO.
(Ⅱ)解:如圖,以A為原點,以AB所在直線為x軸,
AD所在直線為y軸,過點A垂直于平面ABCD的直線為z軸,
建立空間直角坐標(biāo)系,
由題意得:A(0,0,0),B(1,0,0),C(1,1,0),D(0,3,0),
在Rt△PAD中,斜邊AD=3BC=3,又直角邊PD=1,
由勾股定理得AP=2
2
,由直角三角形面積相等,
得點P的豎坐標(biāo)zP=
AP•PD
AD
=
2
2
3
,yP =
8
3

∴P(0,
8
3
2
2
3
),
平面PAD的一個法向量
n
=(x,y,z)

CP
=(-1,
5
3
,
2
2
3
),
CD
=(-1,2,0)
,
設(shè)平面CPD的法向量為
n
=(x,y,z)
,
n
CP
=-x+
5
3
y+
2
2
3
z=0
n
CD
=-x+2y=0
,取y=1,得
n
=(2,1,
2
4
)
,
設(shè)二面角C-PD-A的平面角為θ,
則cosθ=|cos<
AB
,
n
>|=|
2
82
16
|=
4
82
41

∴二面角C-PD-A的余弦值為
4
82
41
點評:本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認(rèn)真審題,注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)根據(jù)所給的獨立檢驗臨界值表,你最多能有多少把握認(rèn)為性別與休閑方式有關(guān)系?可能用到的公式和數(shù)據(jù)K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d
臨界值確定表
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點M在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點F.若圓M與y軸相交于A,B兩點,且△ABM是邊長為2的正三角形.
(1)求橢圓的方程和圓M的方程.
(2)若點D的坐標(biāo)為(0,3),M、N是橢圓上的兩個動點,且
DM
DN
,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC內(nèi)接于單位圓,且(1+tanA)(1+tanB)=2,
(1)求角C
(2)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-x
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若不等式af(x)≥x-
1
2
x2
在x∈(0,+∞)內(nèi)恒成立,求實數(shù)a的取值范圍;
(Ⅲ)n∈N*,求證:
1
ln2
+
1
ln3
+…+
1
ln(n+1)
n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,P為△ABC所在平面外一點,PA⊥PB,PB⊥PC,PC⊥PA,若PA=
5
,PB=
10
,PC=2
2
,且點E,F(xiàn)分別在線段PB,PA 上滿足:PE:EB=1:2,PF:FA=2:3
(Ⅰ)求證:△ABC為銳角三角形;
(Ⅱ)求平面EFC與平面ABC所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,AA1=AB1,E為BB1延長線上的一點,D1E⊥面D1AC.
(Ⅰ)求二面角E-AC-D1的大;
(Ⅱ)在D1E上是否存在一點P,使A1P∥面EAC?若存在,求D1P:PE的值,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在某城市的某高中的學(xué)生中隨機地抽取300名學(xué)生,得到下表:
喜歡數(shù)學(xué)課程 不喜歡數(shù)學(xué)課程 合計
37 85 122
35 143 178
合計 72 228 300
求K2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(a,-1)在函數(shù)y=log 
1
3
x的圖象上,則tan
π
2a
=
 

查看答案和解析>>

同步練習(xí)冊答案