已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設(shè)直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
(1)橢圓為: ,雙曲線為:(2)存在,滿足條件的直線共有9條.

試題分析:(1)將點代入即可求出橢圓的方程,通過橢圓的離心率求出雙曲線的離心率,聯(lián)立離心率和雙曲線的方程,求出;(2)因為直線與橢圓交于不同兩點,所以聯(lián)立直線和橢圓方程,消去,整理方程即可.
試題解析:(1)將點代入解得
∴橢圓為: ,                                       (2分)
橢圓的離心率為∴雙曲線的離心率為,              (3分)

∴雙曲線為:                                        (6分)
(2)由消去化簡整理得:
設(shè),,則
     ①                     (8分)
消去化簡整理得:
設(shè),,則
     ②                     (10分)
因為,所以,
得:
所以.由上式解得
當(dāng)時,由①和②得.因是整數(shù),
所以的值為
當(dāng),由①和②得.因是整數(shù),所以
于是滿足條件的直線共有9條.                                  (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線的焦點為,準線為,,以為圓心的圓相切于點的縱坐標為,是圓軸除外的另一個交點.
(I)求拋物線與圓的方程;
(II)過且斜率為的直線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等的長度單位.已知直線的參數(shù)方程為 (t為參數(shù),0<a<),曲線C的極坐標方程為
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)a變化時,求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在直角坐標系中,曲線的參數(shù)方程為:為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標方程為:
(Ⅰ)寫出曲線和直線在直角坐標系下的方程;
(II)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的左焦點作圓: 的兩條切線,切點為,,雙曲線左頂點為,若,則雙曲線的漸近線方程為       (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點
(I)求橢圓C的離心率:
(II)設(shè)過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C:與橢圓共焦點,

(Ⅰ)求的值和拋物線C的準線方程;
(Ⅱ)若P為拋物線C上位于軸下方的一點,直線是拋物線C在點P處的切線,問是否存在平行于的直線與拋物線C交于不同的兩點A,B,且使?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準線過雙曲線的右焦點,則雙曲線的離心率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知三個數(shù)構(gòu)成一個等比數(shù)列,則圓錐曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案