【題目】某公司有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結構,調(diào)整出名員工從事第三產(chǎn)業(yè),調(diào)整后他們平均每人每年創(chuàng)造利潤為萬元(),剩下的員工平均每人每年創(chuàng)造的利潤可以提高.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則調(diào)整員工從事第三產(chǎn)業(yè)的人數(shù)應在什么范圍?
(2)在(1)的條件下,若調(diào)整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 與都是正三角形, , .
(Ⅰ)求證: ;
(Ⅱ)若,試求的值,使直線與所成角的正弦值為;
(Ⅲ)若,試寫出三棱錐與三棱錐的體積比.(不要求寫求解過程)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
銷量件 | 100 | 94 | 93 | 90 | 85 | 78 |
預計在今后的銷售中,銷量與單價仍然服從這種線性相關關系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為( )
(附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率的最小二乘估計值為.參考數(shù)值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,B1,B2是橢圓的短軸端點,P是橢圓上異于點B1,B2的一動點.當直線PB1的方程為時,線段PB1的長為.
(1)求橢圓的標準方程;
(2)設點Q滿足: .求證:△PB1B2與△QB1B2的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列為遞增的等差數(shù)列,,,,其中.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和;
(3)設,求使不等式對一切均成立的最大實數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠A,∠B,∠C所對邊分別為a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大小;
(2)若a=2,c=2,求△ABC的面積S的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)且x,.
(1)判斷的奇偶性,并用定義證明;
(2)若不等式在上恒成立,試求實數(shù)a的取值范圍;
(3)的值域為函數(shù)在上的最大值為M,最小值為m,若成立,求正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com