已知數(shù)列
滿足:當(dāng)
(
)時(shí),
,
是數(shù)列
的前
項(xiàng)和,定義集合
是
的整數(shù)倍,
,且
,
表示集合
中元素的個(gè)數(shù),則
,
.
試題分析:由于
(
)時(shí),
,可知數(shù)列
滿足:
,其前n項(xiàng)和
滿足:
當(dāng)
時(shí),
是奇數(shù),則
是
的整數(shù)倍;
所以當(dāng)
時(shí),
的奇數(shù)項(xiàng)共有9項(xiàng),故
9;所以當(dāng)
時(shí),
的奇數(shù)項(xiàng)共有1022項(xiàng),故
1022;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)數(shù)列{
bn}滿足
bn+2=-
bn+1-
bn(
n∈N
*),
b2=2
b1.
(1)若
b3=3,求
b1的值;
(2)求證數(shù)列{
bnbn+1bn+2+
n}是等差數(shù)列;
(3)設(shè)數(shù)列{
Tn}滿足:
Tn+1=
Tnbn+1(
n∈N
*),且
T1=
b1=-
,若存在實(shí)數(shù)
p,
q,對(duì)任意
n∈N
*都有
p≤
T1+
T2+
T3+…+
Tn<
q成立,試求
q-
p的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
在等差數(shù)列
和等比數(shù)列
中,
,
,
是
前
項(xiàng)和.
(1)若
,求實(shí)數(shù)
的值;
(2)是否存在正整數(shù)
,使得數(shù)列
的所有項(xiàng)都在數(shù)列
中?若存在,求出所有的
,若不存在,說(shuō)明理由;
(3)是否存在正實(shí)數(shù)
,使得數(shù)列
中至少有三項(xiàng)在數(shù)列
中,但
中的項(xiàng)不都在數(shù)列
中?若存在,求出一個(gè)可能的
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知單調(diào)遞增的等比數(shù)列{
an}滿足:
a2+
a3+
a4=28,且
a3+2是
a2和
a4的等差中項(xiàng).
(1)求數(shù)列{
an}的通項(xiàng)公式
an;
(2)令
bn=
anlog
an,
Sn=
b1+
b2+…+
bn,求使
Sn+
n·2
n+1>50成立的最小的正整數(shù)
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:填空題
已知等差數(shù)列{an}的公差d≠0,它的第1,5,17項(xiàng)順次成等比數(shù)列,則這個(gè)等比數(shù)列的公比是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)等差數(shù)列{
an}的前
n項(xiàng)和為
Sn,若
a1=-15,
a3+
a5=-18,則當(dāng)
Sn取最小值時(shí)
n等于( ).
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
設(shè)數(shù)列{
an}的各項(xiàng)都是正數(shù),且對(duì)任意
n∈N
*,都有
+…+
=
,記
Sn為數(shù)列{
an}的前
n項(xiàng)和.
(1)求數(shù)列{
an}的通項(xiàng)公式;
(2)若
bn=3
n+(-1)
n-1λ·2
an(
λ為非零常數(shù),
n∈N
*),問(wèn)是否存在整數(shù)
λ,使得對(duì)任意
n∈N
*,都有
bn+1>
bn.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知
的三邊長(zhǎng)成公差為
的等差數(shù)列,且最大角的正弦值為
,則這個(gè)三角形的周長(zhǎng)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知數(shù)列{
an}的前
n項(xiàng)和
Sn滿足:
Sn+
Sm=
Sn+m,且
a1=1,那么
a11=( ).
查看答案和解析>>