(2013•珠海二模)已知數(shù)列{an}是公差為2的等差數(shù)列,且a1,a2,a5成等比數(shù)列,則{an}的前5項和S5為( 。
分析:由等差數(shù)列的三項a1,a2,a5成等比數(shù)列,利用等比數(shù)列的性質(zhì)列出關(guān)系式,再利用等差數(shù)列的通項公式化簡后,將公差d的值代入,得出關(guān)于a1的方程,求出方程的解得到a1的值,由a1及d的值,利用等差數(shù)列的前n項和公式即可求出{an}的前5項和S5的值.
解答:解:∵等差數(shù)列{an}中,a1,a2,a5成等比數(shù)列,
∴a22=a1•a5,即(a1+d)2=a1•(a1+4d),
又d=2,
∴(a1+2)2=a1•(a1+8),
整理得:a12+4a1+4=a12+8a1
解得:a1=1,
則{an}的前5項和S5=5×1+
5(5-1)
2
×2=25.
故選C
點評:此題考查了等比數(shù)列的性質(zhì),等差數(shù)列的通項公式,以及等差數(shù)列的前n項和公式,熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)某高校“統(tǒng)計初步”課程的教師隨機調(diào)查了選該課的一些學(xué)生情況,具體數(shù)據(jù)如下表.為了檢驗主修統(tǒng)計專業(yè)是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到Χ2=
50(13×20-10×7)2
23×27×20×30
≈4.84
因為Χ2>3.841,所以斷定主修統(tǒng)計專業(yè)與性別有關(guān)系,這種判斷出錯的可能性最高為
5%
5%

       專業(yè)
性別
非統(tǒng)計專業(yè) 統(tǒng)計專業(yè)
13 10
7 20
P(K2≥k) 0.050 0.025 0.010 0.001
k 3.841 5.024 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)設(shè)i為虛數(shù)單位,則復(fù)數(shù)
4+3i
i
的虛部為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知函數(shù)f(x)=
x2-ax+1
4x-4×2x-a
,
x≥a
x<a

(1)若x<a時,f(x)<1恒成立,求實數(shù)a的取值范圍;
(2)若a≥-4時,函數(shù)f(x)在實數(shù)集R上有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知集合A={x|-1≤-x<2},B={x|-x≥0},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•珠海二模)已知非零向量
a
b
滿足
a
b
,則函數(shù)f(x)=(
a
x+
b
)2(x∈R)
是(  )

查看答案和解析>>

同步練習(xí)冊答案