【題目】已知函數(shù)的定義域?yàn)?/span>;
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)實(shí)數(shù)為的最大值,若實(shí)數(shù),,滿足,求的最小值.
【答案】(1);(2)
【解析】
(1)由定義域?yàn)?/span>R,只需求解|x﹣3|+|x|的最小值,即可得實(shí)數(shù)m的取值范圍(2)根據(jù)(1)實(shí)數(shù)t的值,利用柯西不等式即可求解最小值.
(1)函數(shù)的定義域?yàn)?/span>R,
那么|x﹣3|+|x|﹣m≥0對(duì)任意x恒成立,∴只需m≤(|x﹣3|+|x|)min,
根據(jù)絕對(duì)值不等式|x﹣3|+|﹣x|≥|x﹣3﹣x|=3
∴3﹣m≥0,所以m≤3,
故實(shí)數(shù)m的取值范圍(﹣∞,3];
(2)由(1)可知m的最大值為3,即t=3,
那么a2+b2+c2=t2=9,
則a2+1+b2+1+c2+1=12,
由柯西不等式可得()(a2+1+b2+1+c2+1)≥(1+1+1)2=9,
∴(),當(dāng)a=b=c時(shí)取等號(hào),
故得的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:,,是拋物線上的兩點(diǎn),是坐標(biāo)原點(diǎn),且.
(1)若,求的面積;
(2)設(shè)是線段上一點(diǎn),若與的面積相等,求的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線,交雙曲線的兩條漸近線于兩點(diǎn)(點(diǎn)在軸上方),則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出呼叫信號(hào),我海軍艦艇在處獲悉后,立即測(cè)出該漁船在方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為,距離為15海里的處,并測(cè)得漁船正沿方位角為的方向,以15海里/小時(shí)的速度向小島靠攏,我海軍艦艇立即以海里/小時(shí)的速度前去營(yíng)救,求艦艇靠近漁船所需的最少時(shí)間和艦艇的航向.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)直線,直線,直線的斜率分別為,且成等比數(shù)列.
(1)求的值;
(2)若點(diǎn)在橢圓上,滿足的直線是否存在?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,已知四邊形為平行四邊形,平面平面,為的中點(diǎn),,,,.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷下列命題的真假.
(1)過(guò)一條直線的平面有無(wú)數(shù)多個(gè);
(2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無(wú)數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線上;
(3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線段;
(4)兩個(gè)相交平面可能存在不在一條直線上的3個(gè)公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:
男 | 女 | 總計(jì) | |
讀營(yíng)養(yǎng)說(shuō)明 | |||
不讀營(yíng)養(yǎng)說(shuō)明 | |||
總計(jì) |
附:
(1)由以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別和是否看營(yíng)養(yǎng)說(shuō)明有關(guān)系呢?
(2)從被詢問(wèn)的名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中隨機(jī)選取名學(xué)生,求抽到女生人數(shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某鐵制零件由一個(gè)正四棱柱和一個(gè)球組成,已知正四棱柱底面邊長(zhǎng)與球的直徑均為1cm,正四棱柱的高為2cm.現(xiàn)有這種零件一盒共50kg,取鐵的密度為,.
(1)估計(jì)有多少個(gè)這樣的零件;
(2)如果要給這盒零件的每個(gè)零件表面涂上一種特殊的材料,則需要能涂多少平方厘米的材料(球與棱柱接口處的面積不計(jì),結(jié)果精確到)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com