已知等比數(shù)列{an}共有m項(xiàng)(m≥3),且各項(xiàng)均為正數(shù),a1=1,a1+a2+a3=7.

(1)求數(shù)列{an}的通項(xiàng)an;

(2)若數(shù)列{bn}是等差數(shù)列,且b1=a1,bm=am,判斷數(shù)列{an}前m項(xiàng)的和Sm與數(shù)列{bn-的前m項(xiàng)和Tm的大小并加以證明.

解:(1)設(shè)等比數(shù)列{an}的公比為q,則1+?q+q2=7,∴q=2或q=-3,?

∵{an}的各項(xiàng)均為正數(shù),?

∴q=2,所以an=2n-1.?

(2)由an=2n-1得Sm=2m-1.數(shù)列{bn}是等差數(shù)列,?

b1=a1=1,bm=am=2m-1,?

而Tm=(b1-)+(b2-)+(b3-)+…+(bm-)=(b1+b2+b3+…+bm)-

=m-m=m·2m-2,?

∵Tm-Sm=m·2m-2-(2m-1)=(m-4)·2m-2+1.

∴當(dāng)m=3時(shí),T3-S3=-1,

∴T3<S3,?

∴當(dāng)m≥4時(shí),Tm>Sm.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}滿(mǎn)足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案