(本小題滿分13分)
現(xiàn)有甲、乙兩個項目,對甲項目投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項目產(chǎn)品價格在一年內(nèi)進(jìn)行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目投資十萬元, 取0、1、2時, 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機(jī)變量、分別表示對甲、乙兩項目各投資十萬元一年后的利潤.
(I) 求、的概率分布和數(shù)學(xué)期望、;
(II)當(dāng)時,求的取值范圍.
(I)的概率分布為
1.2 |
1.18 |
1.17 |
|
P |
E=1.2+1.18+1.17=1.18.
由題設(shè)得,則的概率分布為
0 |
1 |
2 |
|
P |
故的概率分布為
1.3 |
1.25 |
0.2 |
|
P |
所以的數(shù)學(xué)期望為
E=++=.
(II) p的取值范圍是0<p<0.3.
【解析】本小題考查二項分布、分布列、數(shù)學(xué)期望、方差等基礎(chǔ)知識,考查同學(xué)們運(yùn)用概率知識解決實際問題的能力.是一個大型的綜合題,可以處在高考題目中
1)根據(jù)題意寫出變量ξ1概率分布,表示出期望,根據(jù)條件可以看出變量ξ2符合二項分布,根據(jù)二項分布的概率寫出分布列,算出期望.
(2)根據(jù)上一問做出的期望,由Eξ1<Eξ2寫出概率P滿足的不等關(guān)系,整理后變化為一元二次不等式的解集,采用十字相乘法得到一元二次不等式的解集,注意概率本身的限制條件.
(I)的概率分布為
1.2 |
1.18 |
1.17 |
|
P |
E=1.2+1.18+1.17=1.18. --------------5分
由題設(shè)得,則的概率分布為
0 |
1 |
2 |
|
P |
故的概率分布為
1.3 |
1.25 |
0.2 |
|
P |
所以的數(shù)學(xué)期望為
E=++=. --------------10分
(II) 由,得: 因0<p<1,所以時,p的取值范圍是0<p<0.3. --------------12分
答:略。 --------------13分
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com