(本題滿分14分,第1小題6分,第2小題8分)
如圖,在四棱錐中,四邊形為平行四邊形,,, 為上一點,且平面.
⑴求證:;
⑵如果點為線段的中點,求證:∥平面.
(本題滿分14分,第1小題6分,第2小題8分)
證明:⑴因為平面,平面,所以.……………2分
因為,且,平面,
所以平面.……………………………………………………………………4分
因為平面,所以.………………………………………………6分
⑵取中點,連結(jié).
因為平面,平面,所以.
因為,所以為的中點.………………………………………………8分
所以為△的中位線.所以∥,且=.……………10分
因為四邊形為平行四邊形,所以∥,且.
故∥,且.
因為為中點,所以∥,且.
所以四邊形為平行四邊形,所以∥.………………………………12分
因為平面,平面,所以∥平面.………………14分
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分,第(1)小題6分,第(2)小題8分)
四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60,在四邊形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.
(1)求四棱錐P-ABCD的體積;
(2)求異面直線PA與BC所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分,第(1)小題4分,第(2)小題4分,第(2)小題6分)
設(shè)數(shù)列中,若,則稱數(shù)列為“凸數(shù)列”。
(1)設(shè)數(shù)列為“凸數(shù)列”,若,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”中,求證:;
(3)設(shè),若數(shù)列為“凸數(shù)列”,求數(shù)列前項和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分,第1小題6分,第2小題8分)
已知函數(shù),x∈R,且f(x)的最大值為1.
(1) 求m的值,并求f(x)的單調(diào)遞增區(qū)間;
(2) 在△ABC中,角A、B、C的對邊a、b、c,若,且,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市高三上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本題滿分14分,第1小題5分,第2小題9分)
一校辦服裝廠花費2萬元購買某品牌運動裝的生產(chǎn)與銷售權(quán),根據(jù)以往經(jīng)驗,每生產(chǎn)1百套這種品牌運動裝的成本為1萬元,每生產(chǎn)x(百套)的銷售額R(x)(萬元)滿足:
(1)該服裝廠生產(chǎn)750套此種品牌運動裝可獲得利潤多少萬元?
(2)該服裝廠生產(chǎn)多少套此種品牌運動裝利潤最大?此時,利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分14分,第(1)小題6分,第(2)小題8分)
設(shè)函數(shù),若不等式的解集為。
(1)求的值;
(2)若函數(shù)在上的最小值為1,求實數(shù)的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com