【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 . (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn .
【答案】解:(Ⅰ)Sn=3n2+8n, ∴n≥2時(shí),an=Sn﹣Sn﹣1=6n+5,
n=1時(shí),a1=S1=11,∴an=6n+5;
∵an=bn+bn+1 ,
∴an﹣1=bn﹣1+bn ,
∴an﹣an﹣1=bn+1﹣bn﹣1 .
∴2d=6,
∴d=3,
∵a1=b1+b2 ,
∴11=2b1+3,
∴b1=4,
∴bn=4+3(n﹣1)=3n+1;
(Ⅱ)cn= = =6(n+1)2n ,
∴Tn=6[22+322+…+(n+1)2n]①,
∴2Tn=6[222+323+…+n2n+(n+1)2n+1]②,
① ﹣②可得﹣Tn=6[22+22+23+…+2n﹣(n+1)2n+1]=12+6× ﹣6(n+1)2n+1=(﹣6n)2n+1=﹣3n2n+2 ,
∴Tn=3n2n+2
【解析】(Ⅰ)求出數(shù)列{an}的通項(xiàng)公式,再求數(shù)列{bn}的通項(xiàng)公式;(Ⅱ)求出數(shù)列{cn}的通項(xiàng),利用錯(cuò)位相減法求數(shù)列{cn}的前n項(xiàng)和Tn .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)可以得到問題的答案,需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , S3=﹣15,且a1+1,a2+1,a4+1成等比數(shù)列,公比不為1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題P:實(shí)數(shù)x滿足2x2﹣5ax﹣3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足 .
(1)若a=2,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)在區(qū)間(﹣∞,0)上是增函數(shù)的是( )
A.f(x)=x2﹣4x
B.g(x)=3x+1
C.h(x)=3﹣x
D.t(x)=tanx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱A1A⊥底面ABC,AC=BC,D、E、F分別為棱AB,BC,A1C1的中點(diǎn).
(1)證明:EF∥平面A1CD;
(2)證明:平面A1CD⊥平面ABB1A1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓C滿足:①圓心C在射線y=2x(x>0)上; ②與x軸相切;
③被直線y=x+2截得的線段長為
(1)求圓C的方程;
(2)過直線x+y+3=0上一點(diǎn)P作圓C的切線,設(shè)切點(diǎn)為E、F,求四邊形PECF面積的最小值,并求此時(shí) 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根;命題q:函數(shù)y=(m+2)x﹣1是R上的單調(diào)增函數(shù).若“p或q”是真命題,“p且q”是假命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com