用反證法證明命題:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個(gè)是偶數(shù)時(shí),正確的假設(shè)是假設(shè)________都不是偶數(shù).

a,b,c
分析:根據(jù)用反證法證明命題時(shí),假設(shè)命題的否定成立,而“a,b,c中至少有一個(gè)是偶數(shù)”的否定是:“a,b,c 都不是偶數(shù)”,從而得到答案.
解答:用反證法證明命題時(shí),假設(shè)命題的否定成立.
a,b,c中至少有一個(gè)是偶數(shù),它的否定是:a,b,c 都不是偶數(shù),
故答案為 a,b,c.
點(diǎn)評(píng):本題考查用反證法證明命題的方法,求出“a,b,c中至少有一個(gè)是偶數(shù)”的否定,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若x>0,y>0 且x+y>2,則
1+y
x
1+x
y
中至少有一個(gè)小于2”時(shí),應(yīng)假設(shè)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、用反證法證明命題:“若a,b∈N,ab能被3整除,那么a,b中至少有一個(gè)能被3整除”時(shí),假設(shè)應(yīng)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若直線AB、CD是異面直線,則直線AC、BD也是異面直線”的過(guò)程歸納為以下三個(gè)步驟:
①則A,B,C,D四點(diǎn)共面,所以AB、CD共面,這與AB、CD是異面直線矛盾;
②所以假設(shè)錯(cuò)誤,即直線AC、BD也是異面直線;
③假設(shè)直線AC、BD是共面直線;
則正確的序號(hào)順序?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若a+b>0,ab>0,則a,b全為正數(shù)”時(shí),反設(shè)正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用反證法證明命題:“若整數(shù)系數(shù)一元二次方程ax2+bx+c=0(a≠o)有有理根,那么 a,b,c中至少有一個(gè)是偶數(shù)”時(shí),應(yīng)假設(shè)( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案