如圖,點(diǎn)P是橢圓+=1上一動(dòng)點(diǎn),點(diǎn)H是點(diǎn)M在x軸上的射影,坐標(biāo)平面xOy內(nèi)動(dòng)點(diǎn)M滿足:(O為坐標(biāo)原點(diǎn)),設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過右焦點(diǎn)F的直線l交曲線C于D,E兩點(diǎn),且2=,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

【答案】分析:(Ⅰ)設(shè)動(dòng)點(diǎn)M(x,y),P(x,y),則H(x,0),由動(dòng)點(diǎn)M滿足:(O為坐標(biāo)原點(diǎn)),得出坐標(biāo)之間的關(guān)系,利用P(x,y)是橢圓+=1上一動(dòng)點(diǎn),即可求出曲線C的方程;
(Ⅱ)直線l:y=k(x-1),設(shè)D(x1,y1),E(x2,y2),由于2=,得坐標(biāo)之間的關(guān)系,聯(lián)立,得(1+k2)x2-2k2x+k2-4=0,利用韋達(dá)定理,即可求得k=,,,再分,分別求得求直線GD的方程.
解答:解:(Ⅰ)設(shè)動(dòng)點(diǎn)M(x,y),P(x,y),則H(x,0),
由動(dòng)點(diǎn)M滿足:(O為坐標(biāo)原點(diǎn)),即

∵P(x,y)是橢圓+=1上一動(dòng)點(diǎn)


∴x2+y2=4
∴曲線C的方程為x2+y2=4
(Ⅱ)直線l:y=k(x-1),設(shè)D(x1,y1),E(x2,y2),由于2=
則 
∴x2=3-2x1
聯(lián)立,得(1+k2)x2-2k2x+k2-4=0,
則 x1+x2=,…①x1x2=,…②,
x2=3-2x1代入①、②得,,…③,…④
由③、④得k=,…(9分)

(i)若時(shí),,,
,
,
∴直線GD的方程是,即;
(ii)當(dāng)時(shí),同理可求直線GD的方程是…(12分)
點(diǎn)評(píng):本題重點(diǎn)考查軌跡方程,考查直線與圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,解題時(shí)聯(lián)立方程,利用韋達(dá)定理是關(guān)鍵
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)點(diǎn)P是橢圓E:
x2
4
+y2=1
上的任意一點(diǎn)(異于左,右頂點(diǎn)A,B).
(1)若橢圓E的右焦點(diǎn)為F,上頂點(diǎn)為C,求以F為圓心且與直線AC相切的圓的半徑;
(2)設(shè)直線PA,PB分別交直線l:x=
10
3
與點(diǎn)M,N,求證:PN⊥BM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•泰安一模)如圖,點(diǎn)F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為
1
2
.點(diǎn)C在x軸上,BC⊥BF,且B、C、F三點(diǎn)確定的圓M恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)過F作一條與兩坐標(biāo)軸都不垂直的直線l交橢圓于P、Q兩點(diǎn),在x軸上是否存在定點(diǎn)N,使得NF恰好為△PNQ的內(nèi)角平分線,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西山區(qū)模擬)如圖,點(diǎn)P是橢圓
x2
4
+
y2
3
=1上一動(dòng)點(diǎn),點(diǎn)H是點(diǎn)M在x軸上的射影,坐標(biāo)平面xOy內(nèi)動(dòng)點(diǎn)M滿足:
3
HM
=2
HP
(O為坐標(biāo)原點(diǎn)),設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過右焦點(diǎn)F的直線l交曲線C于D,E兩點(diǎn),且2
DF
=
FE
,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)F是橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A、B分別是橢圓的右頂點(diǎn)與上頂點(diǎn),橢圓的離心率為
1
2
,三角形ABF的面積為
3
3
2
,
(Ⅰ)求橢圓W的方程;
(Ⅱ)對(duì)于x軸上的點(diǎn)P(t,0),橢圓W上存在點(diǎn)Q,使得PQ⊥AQ,求實(shí)數(shù)t的取值范圍;
(Ⅲ)直線l:y=kx+m(k≠0)與橢圓W交于不同的兩點(diǎn)M、N (M、N異于橢圓的左右頂點(diǎn)),若以MN為直徑的圓過橢圓W的右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案