解法一:設(shè)拋物線,焦點(diǎn)弦AB的中點(diǎn)為,,如圖所示。


消去參數(shù)k得軌跡的普通方程:。
焦點(diǎn)弦中點(diǎn)的軌跡是項(xiàng)點(diǎn)為,焦點(diǎn)為的拋物線。
要表示拋物線焦點(diǎn)弦AB的中點(diǎn)坐標(biāo),可選弦AB所在的直線的斜率k為參數(shù),也可選A、B兩點(diǎn)的坐標(biāo)為參數(shù)。
解法二:設(shè)拋物線焦點(diǎn)弦AB中點(diǎn)為,,則

、在拋物線上。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,點(diǎn)為坐標(biāo)原點(diǎn).
(1)若圓與直線相切時(shí),求中點(diǎn)的軌跡方程;
(2)若圓與相切時(shí),且面積最小,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)直角梯形ABCD中, ∠DAB=90°,AD//BC,
AB="2," AD=, BC=,橢圓E以A,B為焦點(diǎn)且經(jīng)過點(diǎn)D.  (1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求橢圓E的方程;  (2)若點(diǎn)Q滿足:,問是否存在不平行AB,的直線與橢圓E交于M、N兩點(diǎn).且|MQ|=|NQ|.若存在,求直線的斜率的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的方程為

過點(diǎn)M(0,m)且傾斜角為的直線交拋物線于
Ax1,y1),Bx2,y2)兩點(diǎn),且
(1)求m的值
(2)(文)若點(diǎn)M所成的比為,求直線AB的方程
(理)若點(diǎn)M所成的比為,求關(guān)于的函數(shù)關(guān)系式。                           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





的坐標(biāo);
(2)已知A,B求點(diǎn)C使;
(3)已知橢圓兩焦點(diǎn)F1F2,離心率e=0.8。求此橢圓長軸上
兩頂點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題





查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(原創(chuàng)題)
已知是曲線上一點(diǎn),是該曲線的兩個(gè)焦點(diǎn),若內(nèi)角平分線的交點(diǎn)到三邊上的距離為1,,則的值為   
A.B.C.-D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓+=1與雙曲線=1(m,n,p,q∈R+)有共同的焦點(diǎn)F1、F2,P是橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|=      

查看答案和解析>>

同步練習(xí)冊答案