已知橢圓的左、右焦點(diǎn)分別為F1、F2,離心率,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且,求直線l的方程.
【答案】分析:(1)由已知得,解得,由此能得到所求橢圓的方程.
(2)由題意知F1(-1,0)、F2(1,0),①若直線l的斜率不存在,
則直線l的方程為x=-1,由
設(shè)、,這與已知相矛盾.
②若直線l的斜率存在,設(shè)直線直線l的斜率為k,則直線l的方程為y=k(x+1),設(shè)M(x1,y1)、N(x2,y2),聯(lián)立,消元得(1+2k2)x2+4k2x+2k2-2=0.再由根與系數(shù)的關(guān)系進(jìn)行求解.
解答:解:(1)由已知得,
解得
∴所求橢圓的方程為
( 2)由(1)得F1(-1,0)、F2(1,0)
①若直線l的斜率不存在,則直線l的方程為x=-1,

設(shè)、,
,這與已知相矛盾.
②若直線l的斜率存在,設(shè)直線直線l的斜率為k,則直線l的方程為y=k(x+1),
設(shè)M(x1,y1)、N(x2,y2),
聯(lián)立,消元得(1+2k2)x2+4k2x+2k2-2=0
,

又∵


化簡(jiǎn)得40k4-23k2-17=0
解得k2=1或k2=(舍去)
∴k=±1
∴所求直線l的方程為y=x+1或y=-x-1
點(diǎn)評(píng):本題考查直線和圓錐曲線的綜合應(yīng)用,解題時(shí)要認(rèn)真審題,合理解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點(diǎn)P(1,
3
2
)
.M為橢圓上的動(dòng)點(diǎn),以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與y軸有兩個(gè)交點(diǎn),求點(diǎn)M橫坐標(biāo)的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左、右焦點(diǎn)分別為,其右準(zhǔn)線上上存在點(diǎn)(點(diǎn) 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測(cè)考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,, 點(diǎn)是橢圓的一個(gè)頂點(diǎn),△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點(diǎn)分別作直線,交橢圓于,兩點(diǎn),設(shè)兩直線的斜率分別為,,且,證明:直線過定點(diǎn)().

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點(diǎn)分別為F1、F2,其中

F2也是拋物線的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點(diǎn)分別為、,離心率,右準(zhǔn)線方程為

(I)求橢圓的標(biāo)準(zhǔn)方程;

(II)過點(diǎn)的直線與該橢圓交于MN兩點(diǎn),且,求直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案