若是方程的兩根,且求的值.
解析試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/9/1orky2.png" style="vertical-align:middle;" />,是方程的兩根,所以由根與系數(shù)的關(guān)系得,所以,,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ed/a/1koxf2.png" style="vertical-align:middle;" />,所以,則,又由兩角和的正切公式得,從而可得.
試題解析:由題意得,所以
易知且∴
∴∴
考點(diǎn):1.兩角和的正切公式;2.方程根與系數(shù)關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b,c分別為ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,=(sinA,1),=(cosA,),且//.
(I)求角A的大;
(II)若a=2,b=2,求ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓O的半徑為R(R為常數(shù)),它的內(nèi)接三角形ABC滿足成立,其中分別為的對(duì)邊,求三角形ABC面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的周期為,其中.
(Ⅰ)求的值及函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)在中,設(shè)內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a、b、c,若,,f(A)=,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且當(dāng)時(shí),的最小值為2.
(1)求的值,并求的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的,再把所得圖象向右平移個(gè)單位,得到函數(shù),求方程在區(qū)間上的所有根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),
(Ⅰ)求函數(shù)的最小正周期,并求在區(qū)間上的最小值;
(Ⅱ)在中,分別是角的對(duì)邊,為銳角,若,,的面積為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com