設(shè)橢圓數(shù)學公式的兩個焦點分別為F1,F(xiàn)2,若點P橢圓上,且數(shù)學公式,則|PF1|•|PF2|=________.


分析:先設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,代入△F1PF2的余弦定理中求得mn的值.
解答:橢圓可知,a=5,b=3,c=4,
設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=2a=10,
∴m2+n2+2nm=100,
∴m2+n2=100-2nm
由余弦定理可知cos60°===,求得mn=
即|PF1|•|PF2|=
故答案為:
點評:本題主要考查了橢圓的應(yīng)用,橢圓的簡單性質(zhì)和橢圓的定義.考查了考生對所學知識的綜合運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率是( 。
A、
2
2
B、
2
-1
2
C、2-
2
D、
2
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,過F2作橢圓長軸的垂線與橢圓相交,其中的一個交點為P,若△F1PF2為等腰直角三角形,則橢圓的離心率是(  )
A、
2
-1
B、
2
+1
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1,F(xiàn)2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)橢圓的兩個焦點分別為F1、F2,橢圓短軸的一端點為B,若△F1BF2為等腰直角三角形,則橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10.設(shè)橢圓的兩個焦點分別為,過F2作橢圓長軸的垂線交橢圓于點,若為等腰直角三角形,則橢圓的離心率為(  )

A             B              

C          D

查看答案和解析>>

同步練習冊答案