18.甲組數(shù)據(jù)為x1,x2,…,xn,乙組數(shù)據(jù)為y1,y2,…yn,其中yi=$\sqrt{2}$xi+2(i=1,2,…,n),若甲組數(shù)據(jù)平均值為10,方差為2,則乙組數(shù)據(jù)的平均值和方差分別為(  )
A.10$\sqrt{2}$+2,4B.10$\sqrt{2}$,2$\sqrt{2}$C.10$\sqrt{2}$+2,6D.10$\sqrt{2}$,4

分析 利用均值和方差的性質(zhì)直接求解.

解答 解:甲組數(shù)據(jù)為x1,x2,…,xn,乙組數(shù)據(jù)為y1,y2,…yn,其中yi=$\sqrt{2}$xi+2(i=1,2,…,n),
甲組數(shù)據(jù)平均值為10,方差為2,
∴乙組數(shù)據(jù)的平均值為10$\sqrt{2}$+2,方差為($\sqrt{2}$)2×2=4.
故選:A.

點(diǎn)評(píng) 本題考查均值和方差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意均值和方差的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知i為虛數(shù)單位,復(fù)數(shù)z滿足1+i=z(-1+i),則復(fù)數(shù)z2017=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=x2sinx導(dǎo)數(shù)為( 。
A.y'=2x+cosxB.y'=x2cosx
C.y'=2xcosxD.y'=2xsinx+x2cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,若an=(-1)n(2n-1).
(Ⅰ)求S1,S2,S3,S4;
(Ⅱ)猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{4}x,x≥1}\\{{2}^{-x},x<1}\end{array}\right.$,求不等式f(x)≤1的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.根據(jù)已知條件計(jì)算.
(1)已知角α終邊經(jīng)過點(diǎn)P(1,-$\sqrt{3}$),求sinα,cosα,tanα的值;
(2)已知角α∈(0,π)且sinα+cosα=-$\frac{1}{5}$,求sinα•cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=xsinx+cosx在下列區(qū)間內(nèi)是增函數(shù)的是( 。
A.$(\frac{π}{2},\frac{2π}{3})$B.(π,2π)C.(2π,3π)D.$(\frac{3π}{2},\frac{5π}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列求導(dǎo)運(yùn)算正確的是( 。
A.${[{ln(2x+1)}]^′}=\frac{1}{2x+1}$B.${({{{log}_2}x})^′}=\frac{1}{xln2}$C.(3x)′=3xlog3eD.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.己知函數(shù)f(x)=$\frac{{a{x^2}}}{e^x}({a≠0})$,h(x)=x-$\frac{1}{x}$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)a=1,且g(x)=$\frac{1}{2}[{f(x)+h(x)}]-\frac{1}{2}\left|{f(x)}\right.-h(x)\left|{-c{x^2}}$,已知函數(shù)g(x)在(0,+∞)上是增函數(shù).
(1)研究函數(shù)φ(x)=f(x)-h(x)在(0,+∞)上零點(diǎn)的個(gè)數(shù);
(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案