已知數(shù)列滿足:,記數(shù)列的前n項(xiàng)之積為,則=___

 

【答案】

1

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,n∈N*,an>0,數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+1=
2
Sn+1+Sn-1

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{Sn}中存在若干項(xiàng),按從小到大的順序排列組成一個(gè)以S1為首項(xiàng),3為公比的等比數(shù)列{bn},
①求數(shù)列{bn}的項(xiàng)數(shù)k與n的關(guān)系式k=k(n);
②記cn=
1
k(n)-1
(n≥2)
,求證:
n
i=2
ci∈[
1
3
2
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn},且滿足an+1-an=bn(n=1,2,3,…).
(1)若a1=0,bn=2n,求數(shù)列{an}的通項(xiàng)公式;
(2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.記cn=a6n-1(n≥1),求證:數(shù)列{cn}為常數(shù)列;
(3)若bn+1bn-1=bn(n≥2),且b1=1,b2=2.若數(shù)列{
ann
}中必有某數(shù)重復(fù)出現(xiàn)無(wú)數(shù)次,求首項(xiàng)a1應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:若數(shù)列滿足,則稱數(shù)列為“平方遞推數(shù)列”。已知數(shù)列中,,點(diǎn)在函數(shù)的圖像上,其中為正整數(shù)。

  (1)證明:數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列。

  (2)設(shè)(1)中“平方遞推數(shù)列”的前項(xiàng)之積為,即,求數(shù)列的通項(xiàng)及關(guān)于的表達(dá)式。

(3)記,求數(shù)列的前項(xiàng)之和,并求使的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省淄博市高三3月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

若數(shù)列滿足,則稱數(shù)列平方遞推數(shù)列.已知數(shù)列,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).

1)證明數(shù)列平方遞推數(shù)列,且數(shù)列為等比數(shù)列;

2設(shè)(1)中平方遞推數(shù)列的前項(xiàng)積為,

,求;

3)在(2)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分6分,第2小題滿分7分,第3小題滿分5分.

  在數(shù)列(p為非零常數(shù)),則稱數(shù)列為“等差比”數(shù)列,p叫數(shù)列的“公差比”.

已知數(shù)列滿足,判斷該數(shù)列是否為等差比數(shù)列?

已知數(shù)列是等差比數(shù)列,且公差比,求數(shù)列的通項(xiàng)公式

(3)記為(2)中數(shù)列的前n項(xiàng)的和,證明數(shù)列也是等差比數(shù)列,并求出公差比p的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案