已知函數(shù)f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)設(shè)F(x)=ax2+f′(x)(a∈R),討論函數(shù)F(x)的單調(diào)性.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求得函數(shù)的定義域,求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求得函數(shù)f(x)的最小值.
(2)分類討論,利用導(dǎo)數(shù)的正負(fù),即可得到函數(shù)F(x)的單調(diào)性.
解答: 解:函數(shù)的定義域?yàn)椋?,+∞)
求導(dǎo)函數(shù),可得f′(x)=1+lnx
令f′(x)=1+lnx=0,可得x=
1
e

∴0<x<
1
e
時(shí),f′(x)<0,x>
1
e
時(shí),f′(x)>0
∴x=
1
e
時(shí),函數(shù)取得極小值,也是函數(shù)的最小值
∴f(x)min=f(
1
e
)=
1
e
•ln
1
e
=-
1
e

(2)F(x)=ax2+lnx+1(x>0),F(xiàn)′(x)=
2ax2+1
x
(x>0).
①當(dāng)a≥0時(shí),恒有F′(x)>0,F(xiàn)(x)在(0,+∞)上是增函數(shù);
②當(dāng)a<0時(shí),令F′(x)>0,得2ax2+1>0,解得0<x<
-
1
2a
;
令F′(x)<0,得2ax2+1<0,解得x>
-
1
2a

綜上,當(dāng)a≥0時(shí),F(xiàn)(x)在(0,+∞)上是增函數(shù);
當(dāng)a<0時(shí),F(xiàn)(x)在(0,
-
1
2a
)上單調(diào)遞增,在(
-
1
2a
,+∞)上單調(diào)遞減.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若cos155°=a,則tan205°=( 。
A、
a
1-a2
B、
1-a2
a
C、-
a
1-a2
D、-
1-a2
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線a,b,c,兩個(gè)平面α,β.則下列命題中:
①a∥c,c∥b⇒a∥b;
②a∥β,b∥β⇒a∥b;
③a∥c,c∥α⇒a∥α;
④a∥β,a∥α⇒α∥β;
⑤a?α,b∥α,a∥b⇒a∥α,
正確的命題是( 。
A、①⑤B、①②C、②④D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,a2=5,a6=13,{bn}為等比數(shù)列,b2=a4,bn+1=3bn
(1)求通項(xiàng)公式an,bn
(2)求{an•bn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)是定義域D內(nèi)的某個(gè)區(qū)間I上的增函數(shù),且F(x)=
f(x)
x
在I上是減函數(shù),則稱y=f(x)是I上的“非完美增函數(shù)”,已知f(x)=lnx,g(x)=2x+
2
x
+alnx(a∈R)
(1)判斷f(x)在(0,1]上是否是“非完美增函數(shù)”;
(2)若g(x)是[1,+∞)上的“非完美增函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+1(a≠0、b∈R),若f(-1)=0,且對任意實(shí)數(shù)x(x∈R)不等式f(x)≥0恒成立.
(1)求實(shí)數(shù)a、b的值;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,長軸長為2
3
,直線l:y=kx+2交橢圓于不同的A,B兩點(diǎn).
(1)求橢圓的方程;
(2)O是坐標(biāo)原點(diǎn),求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:
(1)BC邊上的高所在直線方程;
(2)AB邊中垂線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對應(yīng)點(diǎn)關(guān)于一、三象限的角平分線軸對稱,z1=1+2i,則z1z2=( 。
A、4+5iB、4iC、5iD、5

查看答案和解析>>

同步練習(xí)冊答案