分別為和橢圓上的點,則兩點間的最大距離是(   )
     B.    C.    D.

D

解析試題分析:依題意兩點間的最大距離可以轉(zhuǎn)化為圓心到橢圓上的點的最大距離再加上;圓的半徑.設.圓心到橢圓的最大距離.所以兩點間的最大距離是.故選D.
考點:1.直線與圓的位置關系.2.數(shù)形結合的思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

拋物線的準線方程是,則的值為( )

A.B.C.8D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知為雙曲線:的一個焦點,則點的一條漸近線的距離為(  )

A.B.3C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的一條漸近線平行于直線,雙曲線的一個焦點在直線上,則雙曲線的方程為

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓的左右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于直線于點P,線段的垂直平分線與的交點的軌跡為曲線,若上不同的點,且,則的取值范圍是(  )

A.B.
C.D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

(5分)(2011•陜西)設拋物線的頂點在原點,準線方程為x=﹣2,則拋物線的方程是(         )

A.y2=﹣8x B.y2=8x C.y2=﹣4x D.y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,則該雙曲線的方程為(  )

A.=1 B.=1 
C.=1 D.=1 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在平面直角坐標系xOy中,雙曲線的中心在原點,焦點在y軸上,一條漸近線方程為x-2y=0,則它的離心率為(  )

A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過點M(-2,0)的直線l與橢圓x2+2y2=2交于P1,P2,線段P1P2的中點為P.設直線l的斜率為k1(k1≠0),直線OP(O為坐標原點)的斜率為k2,則k1k2等于(  )

A.-2B.2C.-D.

查看答案和解析>>

同步練習冊答案