在平面直角坐標系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x-3)2+(y-4)2=1.
(Ⅰ)若過點C1(-1,0)的直線l被圓C2截得的弦長為
6
5
,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點P分別作圓C1的兩條切線PE,PF,切點為E,F(xiàn),求
C1E
C1F
的取值范圍;
(Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點?若經(jīng)過,求出定點的坐標;若不經(jīng)過,請說明理由.
(Ⅰ)設直線l的方程為y=k(+1),即kx-y+k=0.
因為直線l被圓C2截得的弦長為
6
5
,而圓C2的半徑為1,
所以圓心C2(3,4)到l:kx-y+k=0的距離為
|4k-4|
k2+1
=
4
5

化簡,得12k2-25k+12=0,解得k=
4
3
或k=
3
4

所以直線l方程為4x-3y+4=0或3x-4y+3=0…(4分)
(Ⅱ)動圓D是圓心在定圓(x+1)2+y2=9上移動,半徑為1的圓
設∠EC1F=2α,則在Rt△PC1E中,cosα=
|C1E|
|PC1|
=
1
|PC1|
,
cos2α=2cos2α-1=
2
|PC1|2
-1
,
C1E
C1F
=|
C1E
||
C1F
|cos2α=cos2α=
2
|PC1|2
-1

由圓的幾何性質(zhì)得,|DC1|-r≤|PC1|≤|DC1|+r,即2≤|PC1|≤4,4≤|PC1|2≤16
C1E
C1F
的最大值為-
1
2
,最小值為-
7
8

C1E
C1F
∈[-
7
8
,-
1
2
]
.…(8分)
(Ⅲ)設圓心C(x,y),由題意,得CC1=CC2,
(x+1)2+y2
=
(x-3)2+(y-4)2

化簡得x+y-3=0,即動圓圓心C在定直線x+y-3=0上運動.
設C(m.3-m),則動圓C的半徑為
1+CC12
=
(1+(m+1)2+(3-m)2

于是動圓C的方程為(x-m)2+(y-3+m)2=1+(m+1)2+(3-m)2
整理,得x2+y2-6y-2-2m(x-y+1)=0.
x-y+1=0
x2+y2-6y-2=0
x=1+
3
2
2
y=2+
3
2
2
x=1-
3
2
2
y=2-
3
2
2

所以定點的坐標為(1-
3
2
2
,2-
3
2
2
),(1+
3
2
2
,2+
3
2
2
)…(13分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(Ⅰ)求雙曲線C2的方程;
(Ⅱ)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1.平面上有點P滿足:存在過點P的無窮多對互相垂直的直線l1,l2,它們分別與圓M,N相交,且直線l1被圓M截得的弦長與直線l2被圓N截得的弦長的比為
3
:1
,試求所有滿足條件的點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知離心率為
6
3
的橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
與圓C:x2+(y-3)2=4交于A,B兩點,且∠ACB=120°,C在AB上方,如圖所示,
(1)求橢圓E的方程;
(2)是否存在過交點B,斜率存在且不為0的直線l,使得該直線截圓C和橢圓E所得的弦長相等?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一束光線從點(0,1)出發(fā),經(jīng)過直線x+y-2=0反射后,恰好與橢圓x2+
y2
2
=1
相切,則反射光線所在的直線方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點P(1,
3
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)設過F1的直線l與橢圓C交于A、B兩點,問在橢圓C上是否存在一點M,使四邊形AMBF2為平行四邊形,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,F(xiàn)1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩個焦點,A、B為兩個頂點,已知橢圓C上的點(1,
3
2
)
到F1、F2兩點的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的焦點F2作AB的平行線交橢圓于P、Q兩點,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C:y=-x2+2x,在點A(0,0),B(2,0)分別作拋物線的切線L1、L2
(1)求切線L1和L2的方程;
(2)求拋物線C與切線L1和L2所圍成的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線y2=2px(p>0)上縱坐標為-p的點M到焦點的距離為2.
(Ⅰ)求p的值;
(Ⅱ)如圖,A,B,C為拋物線上三點,且線段MA,MB,MC與x軸交點的橫坐標依次組成公差為1的等差數(shù)列,若△AMB的面積是△BMC面積的
1
2
,求直線MB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過拋物線y2=2px(p>0)的頂點作兩條互相垂直的弦OA、OB.
(1)設OA的斜率為k,試用k表示點A、B的坐標;
(2)求弦AB中點M的軌跡方程.

查看答案和解析>>

同步練習冊答案