【題目】已知等差數(shù)列滿足.

1)求的通項(xiàng)公式;

2)設(shè)等比數(shù)列滿足,問:與數(shù)列的第幾項(xiàng)相等?

3)若數(shù)列,求數(shù)列的前項(xiàng)和.

【答案】1 2 3.

【解析】

1)由,求得公差,再由,求得,結(jié)合等差數(shù)列的通項(xiàng)公式,即可求解;

2)由,求得等比數(shù)列的首項(xiàng)和公比,利用等比數(shù)列的通項(xiàng)公式求得,結(jié)合(1),即可求解;

3)由(1)、(2)求得,利用等差數(shù)列和等比數(shù)列的前n項(xiàng)和公式,即可求解.

1)設(shè)等差數(shù)列的公差為,

因?yàn)?/span>,所以,

又因?yàn)?/span>,即,解得,

所以數(shù)列的通項(xiàng)公式為.

2)設(shè)等比數(shù)列的公比為,

因?yàn)?/span>,,所以,解得,

所以,則,

,解得,即是數(shù)列的第63項(xiàng)相等.

3)由(1)、(2)可知,所以

所以數(shù)列的前項(xiàng)和

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面是甲、乙兩位同學(xué)高三上學(xué)期的5次聯(lián)考數(shù)學(xué)成績,現(xiàn)在只知其從第1次到第5次分?jǐn)?shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是(

A.甲同學(xué)的成績的平均數(shù)大于乙同學(xué)的成績的平均數(shù)

B.甲同學(xué)的成績的方差大于乙同學(xué)的成績的方差

C.甲同學(xué)的成績的極差小于乙同學(xué)的成績的極差

D.甲同學(xué)的成績的中位數(shù)小于乙同學(xué)的成績的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年我國將加快階梯水價(jià)推行,原則是保基本、建機(jī)制、促節(jié)約,其中保基本是指保證至少80%的居民用戶用水價(jià)格不變.為響應(yīng)國家政策,制定合理的階梯用水價(jià)格,某城市采用簡單隨機(jī)抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進(jìn)行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):

(1)在郊區(qū)的這5戶居民中隨機(jī)抽取2戶,求其年人均用水量都不超過30噸的概率;

(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價(jià)格保持不變.試根據(jù)樣本估計(jì)總體的思想,分析此方案是否符合國家;政策.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最大值;

(2)設(shè),證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】0、24中取一個(gè)數(shù)字,從1、3、5中取兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),則所有不同的三位數(shù)的個(gè)數(shù)是______(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M=,對它的非空子集A,可將A中每個(gè)元素K都乘以再求和(如A=,可求得和為),則對M的所有非空子集,這些和的總和是__________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設(shè)的交點(diǎn)為,當(dāng)變化時(shí),的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè),的交點(diǎn),求的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為過點(diǎn)的直線與拋物線相交于兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn), ,的面積之比__________

【答案】

【解析】

由題意可得拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為

如圖,設(shè),A,B分別向拋物線的準(zhǔn)線作垂線,垂足分別為E,N,

,解得。

代入拋物線解得。

∴直線AB經(jīng)過點(diǎn)與點(diǎn),

故直線AB的方程為,代入拋物線方程解得。

。

,

。答案:

點(diǎn)睛:

在解決與拋物線有關(guān)的問題時(shí),要注意拋物線的定義在解題中的應(yīng)用。拋物線定義有兩種用途:一是當(dāng)已知曲線是拋物線時(shí),拋物線上的點(diǎn)M滿足定義它到準(zhǔn)線的距離為d,|MF|d,可解決有關(guān)距離、最值、弦長等問題;二是利用動(dòng)點(diǎn)滿足的幾何條件符合拋物線的定義從而得到動(dòng)點(diǎn)的軌跡是拋物線.

型】填空
結(jié)束】
17

【題目】已知三個(gè)內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線1(a0,b0)的右焦點(diǎn)為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊答案