(本題滿分14分)
如圖1,在平面內(nèi),ABCD是的菱形,ADD``A1和CD D`C1都是正方形.將兩個(gè)正方形分別沿AD,CD折起,使D``與D`重合于點(diǎn)D1 .設(shè)直線l過點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè)(圖2).
  
(Ⅰ) 設(shè)二面角E – AC – D1的大小為q,若£q£,求線段BE長(zhǎng)的取值范圍;
(Ⅱ)在線段上存在點(diǎn),使平面平面,求與BE之間滿足的關(guān)系式,并證明:當(dāng)0 < BE < a時(shí),恒有< 1.

(方法1)設(shè)菱形的中心為O,以O為原點(diǎn),對(duì)角線AC,BD所在直線分別為x,y軸,建立空間直角坐標(biāo)系如圖1.設(shè)BE =" t" (t > 0).

(Ⅰ)

設(shè)平面的法向量為,則
        3分
設(shè)平面的法向量為,
     4分
設(shè)二面角的大小為,則,   6分
∵cosqÎ,  ∴ ,    
解得£ t £. 所以BE的取值范圍是 [,].    8分
(Ⅱ) 設(shè),則

由平面平面,得平面,
,化簡(jiǎn)得:(t ¹a),即所求關(guān)系式:(BE ¹a).
∴當(dāng)0< t < a時(shí),< 1. 即:當(dāng)0 < BE < a時(shí),恒有< 1.       14分
(方法2)
(Ⅰ)如圖2,連接D1A,D1C,EA,EC,D1O,EO,

∵ D1A= D1C,所以,D1O⊥AC,同理,EO⊥AC,
是二面角的平面角.設(shè)其為q.        3分
連接D1E,在△OD1E中,設(shè)BE =" t" (t > 0)則有:
OD1 = ,OE = ,D1E = ,
.                                  6分
∵cosqÎ,  ∴ ,    
解得£ t £. 所以BE的取值范圍是 [,].
所以當(dāng)條件滿足時(shí),£ BE £.                 8分
(Ⅱ)當(dāng)點(diǎn)E在平面A1D1C1上方時(shí),連接A1C1,則A1C1∥AC,

連接EA1,EC1,設(shè)A1C1的中點(diǎn)為O1,則O1在平面BDD1內(nèi),過O1作O1P∥OE交D1E于點(diǎn)P,則平面平面
作平面BDD1如圖3.過D1作D1B1∥BD交于l點(diǎn)B1,設(shè)EO交D1B1于點(diǎn)Q.
因?yàn)镺1P∥OE,所以==,
由Rt△EB1Q∽R(shí)tEBO,得,解得QB1 = ,得=,  12分
當(dāng)點(diǎn)E在平面A1D1C1下方時(shí),同理可得,上述結(jié)果仍然成立.       13分
∴有=(BE ¹a),∴當(dāng)0 < t < a時(shí),< 1.      14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)
如圖所示的幾何體中,已知平面平面,,且,,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在120°的二面角內(nèi),放一個(gè)半徑為5cm的球切兩半平面于A、B兩點(diǎn),那么這兩個(gè)切點(diǎn)在球面上的最短距離是                       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
如圖,在直三棱柱,

(1)證明:
(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.下列四個(gè)命題
① 分別和兩條異面直線均相交的兩條直線一定是異面直線.  
② 一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面之距離均相等,那么這兩個(gè)平面平行.
③ 一個(gè)二面角的兩個(gè)半平面分別垂直于另一個(gè)二面角的兩個(gè)半平面,則這兩個(gè)二面角的平
面角相等或互補(bǔ).   
④ 過兩異面直線外一點(diǎn)能作且只能作出一條直線和這兩條異面直線同時(shí)相交.其中正確命
題的個(gè)數(shù)是 
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一球的表面積與它的體積的數(shù)量相等,則球的半徑為___________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則AC1與平面A1B1C1D1所成角的正弦值為        .

(第19題)

 
    

     (第20題)                (第21題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,多面體ABCD—EFG中,底面ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖如下:
(I)求證:平面AEF⊥平面BDG;

(II)若存在使得,二面角A—BG—K的大小為,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在棱長(zhǎng)為2的正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點(diǎn).

(Ⅰ)求證:EF//平面ACD1;
(Ⅱ)求異面直線EF與AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一點(diǎn)P,使得二面角P—AC—B的大小為30°?若存在,求出BP的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案